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We report fully nonadiabatic calculations of all rotationless bound states of HT+ molecular ion
st+p+e−d carried out in the framework of the variational method. We show that, in all the states,
except the two highest ones, the bond in the system can be described as covalent. In the highest two
states the bond becomes essentially ionic and HT+ can be described as a T+H+ complex. The wave
function of the system was expanded in terms of spherically symmetric, explicitly correlated
Gaussian functions with preexponential multipliers consisting of powers of the internuclear
distance. Apart from the total energies of the states, we have calculated the expectation values of the
t-p, t-e, and p-e interparticle distances, their squares, and the nucleus-nucleus correlation
functions. ©2005 American Institute of Physics. fDOI: 10.1063/1.1884602g

I. INTRODUCTION

The HD+ molecular ion has been a model system for
studies of the nonadiabatic coupling between the electronic
and nuclear motions. The lack of a center of symmetry in this
system due to different nuclear masses requires that the the-
oretical approach for calculating its stationary bound states is
somewhat different than that applied to the parent symmetric
cation, H2

+, where an obvious placement of the center of the
internal coordinate system is the middle of the bond. Since
the HT+ has even larger nuclear mass difference than HD+,
the approach applied to both systems may be similar. While
the asymmetry of the HD+ system has been extensively in-
vestigated both experimentally1–3 and theoretically,4–6 in-
cluding our recent work,7 there have been only a few studies
sonly theoreticald concerning the HT+ molecular ion.8–10

In a recent work Ben-Itzhaket al.2 studied the dissocia-
tion of the electronic ground state of HD+ following ioniza-
tion of HD by fast proton impact and discovered that the
H++Ds1sd dissociation channel is more likely than the
Hs1sd+D+ channel by about 7%. This symmetry breakdown
can only be explained if the finite nuclear mass correction to
the Born–OppenheimersBOd approximation is taken into ac-
count. In our non-BO calculation,7 we showed that while in
the first 21 vibrational statessv=1,2, . . . ,20d only minor
charge asymmetry is present in the wave functions, in the
highest two statessv=21 andv=22d HD+ is strongly polar-
ized and the system can be described as a complex of D and
H+ sD+H+ is also the lowest energy dissociation product of
the HD+ iond.

In this work we consider the charge asymmetry of the
HT+ ion. Due to a larger mass difference between the nuclei

in HT+ than in HD+, one could expect a stronger charge
polarization and a larger number of the vibrational states
near the dissociation threshold with the “ionic” character.
However, the results of this work will show that this appears
not to be the case. Apart from describing the charge asym-
metry in HT+, another goal of this work has been to provide
high accuracy estimates of the nonrelativistic energies for all
rotationless vibrational states of this ion, which have not
been calculated before, except for few low lying ones.9,10

If the starting point of considering the HT+ ion is its
representation based on the BO approximation, the charge
asymmetry in the system appears as a nonadiabatic coupling
between thegeradeandungeradeelectronic states. The two
states mix due to the coupling of the nuclear and electronic
motions. The coupling increases near the dissociation limit
where the dissociation energy becomes comparable to the
total energy difference of H and T atom ground states.

The T atom is energetically more stable than H because
it has slightly larger reduced mass, which makes the average
electron-nucleus distance slightly shorter in T than in H re-
sulting in stronger coulombic attraction and lower energy.
Thus, upon dissociation, HT+ splits into T+H+ which is a
lower-energy dissociation product than T++H. There are two
previous theoretical works concerning HT+ that need to be
mentioned. Bishop8 and Bishop and Cheung9 first applied an
approach to HT+ that did not involve the adiabatic approxi-
mation and was based on the variational principle. They cal-
culated the ground and the first two excited vibrational
states, as well as a few lowest rotational states of the ion.
Most recently, Frolov10 applied a fully nonadiabatic varia-
tional approach using exponential basis function with com-
plex parameters to refine the total ground-state energies for
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the heteronuclear and homonuclear isotopomers of H2
+, in-

cluding HT+. In this work we compare our energy results
with those of Bishop and Cheung, and of Frolov.

In the present work, we use the approach we have de-
veloped to perform rigorous ground-state and excited state
non-BO calculations on diatomic systems with an arbitrary
number of electrons.11–19 The approach is based on separat-
ing the operator describing the center of mass kinetic energy
from the total Hamiltonian of the system and representing
the remaining internal Hamiltonian in the reference frame
centered at one of the particlessin most cases the heaviest
particled. In the calculation we use the explicitly correlated
n-particle Gaussian functions to expand the spatial part of the
wave function. No approximation is made in the approach
apart from neglecting the relativistic effects and using a finite
basis set expansion of the wave function. As we have dem-
onstrated on a number of cases, including, for example, the
H2 molecule,15 and most recently the HD+ ion,7 the approach
produces very accurate results.

Since the vibrational quantum number is not a “good”
quantum number in the non-BO calculationsonly the values
of the square of the total, i.e., electronic plus nuclear, angular
momentum and its projection on a selected axis are good
quantum numbersd we need to explain what we mean by the
term “vibrational spectrum.” Our use of the term refers to the
ground and excited states with certain value of the total an-
gular momentum. In the present calculations this has been
the ground rotational statesi.e., the state with zero total an-
gular momentum; the rotationless stated.

In this work, we have also calculated the expectation
values of all interparticle distancessi.e., rp-t, rp-e, and rt-ed
and their squares for all considered states. The algorithm for
calculating those quantities is shown in the Appendix. The
comparison of thekrp-el andkrt-el has allowed us to examine
the charge asymmetry that occurs in HT+. To our knowledge,
this is the first direct calculation of these quantities for this
system that uses rigorous nonadiabatic wave functions.

Although the present calculations have concerned the
whole rotationless HT+ spectrum, our main focus was the
highest few vibrational states where the most significant
charge asymmetry is expected to occur. Thus, while all the
states have been calculated with very high precision, in the
highest two states the number of basis function was signifi-
cantly increased to improve the precision even further. Not
only this generated better energy values for those states, but
also allowed to examine the convergence of the procedure in
terms of the number of the basis functions in the wave func-
tion expansion. Since the wave functions of the highest two
states contain the largest number of radial nodes, these states
were the most difficult to describe. The analysis of the con-
vergence of the energy and the averaged interparticle dis-
tances performed for the two states show how reliable the
calculations are not only for those states, but also for the
other states where, due to fewer radial nodes, the basis set
size did not have to be as large.

II. THE HAMILTONIAN

In the approach we use,11 we begin with the total non-
relativistic Hamiltonian for a molecular system in the labo-

ratory Cartesian coordinates. All particles present in the sys-
tem are included in the Hamiltonian. For HT+ it looks as
follows sin atomic unitsd:

ĤTOT= − o
i=1

3
1

2Mi
¹Ri

2 + o
i=1

3

o
j.i

3
QiQj

Rij
, s1d

where Mi’s, Qi’s, and positionsRi’s are the masses, the
charges, and the position vectors of the tritium nucleus, the
proton, and the electron respectivelysM1=mt, M2=mp, M3

=me, Q1=1, Q2=1, Q3=−1d, and whereRij = uR j −Riu are in-
terparticle distances. Note that no distinction between the
electron and the nuclei is made and the two types of particles
are treated equivalently. In the next step, we transform the
laboratory coordinate system to a new coordinate system,
whose first three coordinates are the Cartesian coordinates
describing the position of the center of mass in the laboratory
coordinate system and the remaining six coordinates are in-
ternal coordinates. The internal coordinates are defined with
respect to a Cartesian coordinate system whose origin is
placed at the tritium nucleus and whose axes are parallel to
the axes of the laboratory coordinate frame. The first three of
the six internal coordinates,r 1= uR2−R1u, describe the posi-
tion of the proton with respect to the coordinate origin and
the last three,r 2= uR3−R1u, describe the position of the elec-
tron. Using the new coordinates, we can separate the Hamil-
tonian representing the motion of the center of mass in the
laboratory coordinate system from the internal Hamiltonian,

ĤINT=Ĥ, thereby reducing the three-particle problem to a
two-pseudoparticle problem. The internal Hamiltonian has
the following form:
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This Hamiltonian describes a system containing the refer-
ence particlestritond at the origin of the coordinates with
chargeq0=Q1=1 and two pseudoparticles, or internal par-
ticles, with reduced massesm1=mtmp/ smt+mpd and m2

=mtme/ smt+med, and chargesq1=1 and q2=−1. Thus, the
wave function describing the internal motion of the system,
Csr 1,r 2d, is dependent on the Cartesian coordinates of two
pseudoparticles, the first resembling the proton and the sec-
ond resembling the electron. The second term in the paren-
thesis in Eq.s2d is the mass polarization term, which arises
from the coordinate transformation and which couples the
motion of the two pseudoparticles. In the potential energy
term, r i and r ij are defined asr i = ur i u = uRi+1−R1u and r ij

= uR j+1−Ri+1u = ur j −r iu.
Since the mass of the pseudoproton is much larger than

the mass of the pseudoelectron, all lower bound states of the
system correspond to excitationsseither “rotational” or “vi-
brational”d of the nuclear motion. In particular, as mentioned
before, if the calculation is restricted only to rotationless
statessi.e., fully spherically symmetric statesd, only the vi-
brational states are obtained. In those states, higher excita-
tion should generate larger numbers of radial nodes in the
wave function in terms of the pseudoproton coordinates.
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Another important feature of the eigenfunctions of the
Hamiltonian s2d, which does not appear in the electronic
states, results from the repulsion of the pseudoproton with
the positive charge at the coordinate origin. Due to the repul-
sion, the wave function should significantly decrease in mag-
nitude when the distance of the pseudoproton to the origin
shortens. For bound states the wave function should also
become smaller for larger distances. In between, the vibra-
tional wave function should reach a maximumsnear the
equilibrium internuclear distance for the considered stated
and, depending on the excitation level, it should have several
radial oscillations. The basis set used in the calculation
should be capable of describing these features very accu-
rately.

III. THE WAVE FUNCTION

In our previous works, we have shown that the explicitly
correlated Gaussian basis set involving, functions with pre-
exponential multipliers consisting of the internuclear dis-
tancer 1 raised to a non-negative even powermk sRefs. 12
and 13d

fk = r1
mkexpf− r 8sAk ^ I3dr g s3d

is capable of very effectively describing nonadiabatic zero
angular momentum states of diatomic systems withs elec-
trons. In those functions, the combination of the preexponen-
tial powers of the internuclear distance and the Gaussian ex-
ponents dependent on the coordinates of all pseudoparticles
and their relative distances describes very effectively the cor-
related motion of the pseudonucleus and the pseudoelectrons
in the central potential of the positive charge located at the
origin of the coordinate system. The exponential coefficients
in the Gaussians3d form the symmetric matrixAk. In our
calculations, this matrix is expressed as a product of ann
3n lower triangular matrixLk of rank n and its transpose,
LkLk8. This is done to avoid dealing with constraints that
would need to be imposed on the elements of the matrixAk

due to the required square itegrability of functionss3d in the
optimizations of theAk matrix elements. With the use of the
LkLk8 decomposition ofAk, the square itegrability is automati-
cally satisfied for any variation of the elements ofLk in the
rangef−` ,`g. In Eq. s3d, I3 is the 333 identity matrix, and
in general,In is the n3n identity matrix, ^ denotes the
Kronecker Product, andr is a 3n31 vector of the internal
Cartesian coordinatesr i of the n pseudoparticles. The fact
that functionss3d correspond to zero total angular momen-
tum follows from their rotational invariance.11

In the HT+ calculations, the spin free wave functions,
Csr d=Csr 1,r 2d, for all rotationless states have been gener-
ated as expansions in terms of two-particle Gaussians of the
form given by the expressions3d:

Csr d = o
k=1

K

ckfksr d. s4d

The powersmk ranged from 0 to 250 in the calculations. This
rather extended range of powers was needed to accurately
represent oscillations of the vibrational part of the wave

functions which are particularly strong in highly excited
states.

IV. THE VARIATIONAL CALCULATIONS

The ground-state and excited state nonadiabatic wave
functions for HT+ in the present calculations were obtained
by minimizing the Rayleigh quotient:

Eshckj,hmkj,hLkjd = min
hhckj,hmkj,hLkjj

c8Hshmkj,hLkjdc
c8Sshmkj,hLkjdc

s5d

with respect to the basis function exponential parametershLkj
and the preexponential powershmkj. The minimum with re-
spect to the expansion coefficients of the wave function in
terms of the basis functionsck was found by solving the
secular equation.

Much of the recent progress in the area of very accurate
non-BO diatomic calculations has been due to the derivation
and implementation of analytical gradients of the energy
functional s5d with respect to variational nonlinear param-
eters of the basis functions. In the minimization of the energy
functional, the availability of the analytical gradient of the
energy leads to significant acceleration of the optimization
process and allows one to apply the procedure to functionals
dependent on hundreds or even thousands of variational pa-
rameters.

To achieve the best results in the parameter optimization
with the least computational effort, we have recently imple-
mented a hybrid approach that combines the gradient based
optimization with the stochastic selection method.16,17 The
strategy is based on alternating the gradient based and the
stochastic based optimizations in growing the basis set from
a small initial set generated in a gradient based optimization
to the final set. The basis set for each vibrational state was
generated in a separate calculation. To reach high accuracy in
the calculations, we used a 1500-term expansion for the
ground and first excited states, a 2000-term expansions for
v=2,3 states, a 2500-term expansions forv=4–17states, a
3000-term expansion forv=18–20 states, a 4000-term ex-
pansion forv=21 state. In the calculations for the two high-
est excited statessv=22, 23d, where the charge symmetry
breaking is the most significant, we increased the length of
the expansion to 5000. Having the energy determined with
several basis set expansion lengths for the highest two states
allowed analysis of the convergence of the procedure in
terms of the number of basis functions. The calculations have
been carried out at the University of Arizona Center of Com-
puting and Information Technology with the use of an HP
Alpha GS1280 supercomputer.

After the wave functions for all 24sv=0, . . . ,23d states
were generated, we calculated the expectation values of the
internuclear triton–proton distance,krt-pl, the triton–electron
st-ed distance,krt-el, and the proton–electronsp-ed distance,
krp-el, for each state. We also calculated the average values of
the squares of the distances. The derivation of the formula
for calculating the expectation values is given in the Appen-
dix. In our calculations, we used the following values for the
nuclear masses:mt=5496.921 503me, where me stands for
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the mass of the electronmp=1836.152 672 61me. These val-
ues were taken from CODATA 2002sRef. 20d list of funda-
mental constants.

V. RESULTS AND DISCUSSION

In Table I we compare our variational energy values for
the v=0–23 states of HT+ with the energy values of some
states available in the literature. In the same table we also
show the expectation values of the interparticle distances and
their squares obtained in the calculations. As one could ex-
pect, the average internuclear distance increases with the ris-
ing level of excitation. This increase becomes more pro-
nounced as the excitation level approaches the dissociation
threshold. Forv=21, v=22, andv=23 statessthe highest
levels corresponding to a bound stated the average internu-
clear distance increases from 8.139 a.u. to 11.11 a.u., and
then to 19.91 a.u. respectively. In thev=23 state, the HT+

ion is only bound by 8310−6 hartree and the system is al-
most dissociated.

Our HD+ calculations demonstrated7 that system be-
comes essentially ionic in the last two rotationless vibra-
tional states. As the results in Table I show, the same effect
occurs in the HT+ ion, though the charge asymmetry in the
highest state is somewhat lower than that in the highest state
of HD+. In this highest state of HT+ the t-e average distance
is 1.729 a.u., while thep-e distance is 19.72 a.u. Due to this

high asymmetry the HT+ bond in this state can be described
as ionic. In the lower states, as it was the case with the HD+

ion, some charge asymmetry is also present in thet-e andp-e
distances and this asymmetry progressively increases with
the increasing excitation level. However, the HT+ bond in the
v=0–21states can still be described as mostly covalent.

To illustrate the convergence of the energy and the ex-
pectation values of the interparticle distances, we show in
Table II the results for the groundsv=0d and for the highest
two statessv=22 and 23d obtained with different basis sizes
ranging from 500 to 5000. The two highest states are the
most difficult to describe due to the highest number of radial
nodes in their wave functions and due to their significant
spacial diffuseness. The results presented in Table II show
that both the energy and the distances converged quite well.
With 1500 functions in the basis for the ground state, the
energy is converged in nine significant figures. For the high-
est states the number of converged figures is 8. One may
expect that to reach a similar convergence level for all states
one needs to progressively increase the number of basis
functions going from the bottom to the top of the spectrum.
This is what has been done in the present calculations as
shown by the number of functions used for each state shown
in the second column in Table I. However, as the Gaussians
are usually less effective in describing the electronic and
nuclear cusps than the other regions of the wave function,
there may be some residual error left in our energies. Our

TABLE I. Total energies, expectation values of the triton-proton distance,rt-p, the triton-electron distance,rt-e, and the proton-electron distance,rp-e, and their
squares for the rotationless bound states of HT+. All quantities are in atomic units.K is the number of basis functions.

v K E krt-pl krt-el krp-el krt-p
2 l krt-e

2 l krp-e
2 l E, other works

0 1500 −0.598 176 134 5 2.051 1.686 1.687 4.252 3.525 3.528 −0.598 176 134 4, Ref. 9a

−0.598 176 134 669 766 232, Ref. 10b

1 1500 −0.589 932 813 7 2.161 1.744 1.745 4.802 3.811 3.816 −0.589 932 813 1, Ref. 9a

2 2000 −0.582 080 048 6 2.274 1.804 1.805 5.397 4.120 4.125 −0.582 080 024 8, Ref. 9a

3 2000 −0.574 606 743 5 2.391 1.866 1.867 6.041 4.452 4.458
4 2500 −0.567 503 159 8 2.513 1.930 1.932 6.741 4.811 4.818
5 2500 −0.560 760 877 7 2.639 1.997 1.999 7.502 5.200 5.209
6 2500 −0.554 372 772 0 2.771 2.067 2.069 8.333 5.625 5.635
7 2500 −0.548 333 001 5 2.910 2.140 2.143 9.244 6.090 6.103
8 2500 −0.542 637 011 4 3.056 2.217 2.220 10.25 6.602 6.618
9 2500 −0.537 281 546 4 3.211 2.299 2.302 11.36 7.169 7.189
10 2500 −0.532 264 693 1 3.377 2.386 2.390 12.61 7.803 7.828
11 2500 −0.527 585 922 4 3.556 2.479 2.484 14.01 8.516 8.549
12 2500 −0.523 246 148 0 3.750 2.580 2.587 15.60 9.328 9.372
13 2500 −0.519 247 835 9 3.963 2.690 2.699 17.43 10.26 10.32
14 2500 −0.515 595 121 7 4.199 2.813 2.825 19.58 11.35 11.43
15 2500 −0.512 293 913 8 4.467 2.950 2.966 22.12 12.65 12.77
16 2500 −0.509 352 167 1 4.775 3.106 3.130 25.23 14.22 14.39
17 2500 −0.506 779 939 2 5.138 3.288 3.324 29.12 16.17 16.45
18 3000 −0.504 589 807 9 5.582 3.505 3.564 34.20 18.68 19.18
19 3000 −0.502 796 855 1 6.149 3.771 3.879 41.22 22.05 23.03
20 3000 −0.501 419 014 9 6.925 4.097 4.345 51.82 26.74 29.19
21 4000 −0.500 476 391 2 8.139 4.412 5.259 70.67 32.85 42.28
22 5000 −0.499 998 389 3 11.11 3.068 9.590 129.6 21.63 113.0
23 5000 −0.499 917 007 3 19.91 1.729 19.72 424.4 5.706 424.2
Tc −0.499 909 056 5 1.500 3.001

aObtained with the following mass ratios:me/mp=0.000 544 617,me/mt=0.000 181 920.
bObtained withmp=1836.152 701me, mt=5496.921 58me.
cT atom in the ground state.
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estimation for that error in thev=22 state of HD+ with 4000
terms in the basis was about 10−9 hartreessee Table II in Ref.
7d. An error of the same order of magnitude is probably also
present in our 5000–term energy results for thev=22 and 23
states of HT+.

The lower effectiveness of Gaussians in describing the
cusps is also likely to be partially responsible for the differ-
ence between our ground state energy and the value recently
reported by Frolov,10 who used complex exponential basis
functions, and shown in Table I. In order for our ground-state
energy to become closer to Frolov’s result, we would need to
increase the precision of real numbers in our calculations
from doubles15 digitsd to quadruple. This would make the
optimization less affected by the numerical noise and more
effective. There is another source of the discrepancy between
Frolov’s ground-state energy and ours. It is due to the differ-
ence in the proton and triton massesswe used the most cur-
rent ones, which are slightly lighter leading to our ground-
state energy being slightly higher than Frolov’sd. In order to
test how much of a difference this would make, we recalcu-
lated the energies of all states using the masses given in
Frolov’s paper and we found that our result for the ground-
state shifts down by about 4310−11 hartree. The shift in-
creases with the excitation level and reaches a maximum for
the states in the middle of the spectrumsv=11–13d where it
becomes approximately equal to 4310−10 hartree. For the
highest levels the shift again becomes smaller, by an order of
magnitude. This behavior is expected as it is known that the
nonadiabatic effects are the most significant in the middle of
the vibrational spectrum.

In our recent work21 we developed an algorithm to cal-
culate and plot the pseudonucleus densitysor, as it can be

also called, the nucleus-nucleus correlation functiond based
on the wave function obtained in the non-BO calculation.
The pseudonucleus density is defined as

gsjd = kCsr dudsr 1 − jduCsr dl =E uCsj,r 2du2dr 2. s6d

The algorithm has been applied in this work to show the
pseudoproton density for different states of the HT+ ion. In
Figs. 1 and 2 we show the pseudoproton densities in the
two-dimensionals2Dd and 3D forms for a few states from the
bottom, middle, and the top of the spectrum. We included
both 2D and 3D plots because, while the former better show
the radial behavior of the pseudonucleus density, the latter
better demonstrate the spherical radial symmetry of this
quantity. In the highest,v=23, state the wave function and,
thus, the density have 23 radial nodes. Judging from the
energy values, the Gaussian basis set we use is capable of
describing this very complicated nodal structure very well.
One might be somewhat surprised by the fact that in Fig. 1
for thev=23 state the curve does not touch thej axis before
the last oscillationssee the enlarged fragment of the plotd.

Our interpretation of this effect is the following. In the
non-Born–Oppenheimer calculation the wave function de-
scribes simultaneous motion of nuclei and electronssor, as
should be more correctly described, the motion of pseudonu-
clei and pseudoelectronsd. Obviously, the wave function for
the highest state has to be orthogonal to the wave functions
of all lower states. For rotationless states this orthogonality
can be achieved by the wave function for the highest state
having the highest number of radial nodes. As mentioned
before, the radial nodes can appear in the wave function for
HT+ in terms of the pseudoproton coordinater1 but one can-

TABLE II. The convergence of the energy and the expectation values of the interparticle distances for thev=22 and 23 states with the number of the basis
functions. All quantities in atomic units.

Basis size E krt-pl krt-el krp-el krt-p
2 l krt-e

2 l krp-e
2 l

v=0
500 −0.598 176 131 581 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
1000 −0.598 176 134 461 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
1500 −0.598 176 134 523 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
v=22
1500 −0.499 998 284 200 11.112 0 3.065 97 9.592 28 129.596 21.613 9 112.997
2000 −0.499 998 357 753 11.112 3 3.066 93 9.591 62 129.617 21.625 5 113.006
2500 −0.499 998 374 833 11.111 9 3.067 22 9.590 90 129.607 21.628 8 112.993
3000 −0.499 998 382 517 11.111 7 3.067 36 9.590 52 129.602 21.630 4 112.986
3500 −0.499 998 386 283 11.111 7 3.067 39 9.590 48 129.602 21.630 8 112.986
4000 −0.499 998 387 919 11.111 6 3.067 42 9.590 41 129.601 21.631 2 112.985
4500 −0.499 998 388 479 11.111 6 3.067 43 9.590 38 129.601 21.631 3 112.984
5000 −0.499 998 389 388 11.111 6 3.067 52 9.590 29 129.601 21.632 6 112.983

v=23
1500 −0.499 916 942 558 19.860 2 1.727 55 19.671 8 420.994 5.683 77 420.804
2000 −0.499 916 992 542 19.917 4 1.728 51 19.728 1 424.495 5.700 50 424.289
2500 −0.499 917 000 467 19.913 8 1.728 76 19.724 2 424.349 5.703 90 424.139
3000 −0.499 917 003 246 19.915 3 1.728 80 19.725 7 424.486 5.704 30 424.276
3500 −0.499 917 004 628 19.914 5 1.728 84 19.724 9 424.451 5.704 91 424.240
4000 −0.499 917 005 576 19.913 9 1.728 89 19.724 2 424.423 5.705 46 424.212
4500 −0.499 917 006 555 19.913 4 1.728 90 19.723 7 424.402 5.705 66 424.191
5000 −0.499 917 007 306 19.913 0 1.728 93 19.723 2 424.383 5.705 96 424.171
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not exclude a possibility that, especially for the highest
states, there may be a component in the wave function with a
node in the pseudoelectron coordinater2. If this is the case
the density for thev=23 state will be a sum of two contri-

butions, one with 23 nodes in terms ofr1 and the second one
with a node in terms ofr2 and fewer nodessor even no
nodesd in terms ofr1. This is a possible explanation of why
we see some upshift of the density function away from thej
axis at the last node for thev=23 state. If this explanation is
correct, the effect is purely nonadiabatic beause it results
from mixing of two electronic states.

VI. SUMMARY

In this work, rigorous, variational, high accuracy, nona-
diabatic calculations employing explicitly correlated Gauss-
ian basis functions have been performed for the HT+ ion to
determine its complete vibrational spectrum corresponding
to zero rotational quantum number. This is the first work
reporting non-BO energies for all the vibrational states of
this system. The wave functions obtained in the calculations
were used to determine expectation values of thet-p, t-e, and
p-e distances. Those values showed that, while the bond in
HT+ in the lowest 22 vibrational states can be described as
covalent, in the highest two states it becomes ionic. In those
states the ion becomes a complex of T+p. In v=23 state the
electron becomes entirely localized around the tritium
nucleus and almost completely absent at the proton. This
strong, purely nonadiabatic effect occurs when the dissocia-
tion energy of a vibrationally excited state becomes close to
the difference between the total energies of the H and T
atoms.

FIG. 1. Correlation functions for the ground state and for the 4, 9, 21, 22,
and 23 excited states of HT+.

FIG. 2. 3D plots of the correlation functions,gsjx,jx,jz=0d, for the ground state and for the first, second, and fourth excited states of HT+. jx andjy sx and
y axis, respectivelyd are in a.u.
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APPENDIX: STRUCTURAL INTEGRALS

First, let us recall some definitions and theorems con-
cerning matrix properties, which we will use in the deriva-
tion of the distance matrix elements.

The Taylor expansion has the form

fsxd = o
i=0

`
f sndsx0d

n!
sx − x0dn. sA1d

The Pochhammer symbol is defined as

sadn = p
k=0

n−1

sa + kd =
Gfa + ng

Gfag
, sA2d

wheresad0=1, andGfxg is the Euler gamma function.
We will use the Leibniz formula to determine theNth

derivative of the product of functionsf andg:

sf + gdsNd = o
k=0

N SN

k
D f sN−kdgskd. sA3d

Also, we will use a rank oneJij matrix, which is defined
as

Jij = HEii if i = j

Eii + Ejj − Eij − Eji if i Þ j ,

whereEij is the n3n matrix with 1 in its i j th position and
0’s elsewhere.

The basis functions, which have been used in our calcu-
lation have the form

uwkl = ur1
2mke−r8Ākrl = ur1

2mkfkl, sA4d

whereĀk is a symmetric and positive definite matrix of non-

linear variational parameters. The notationĀk denotes a Kro-
necker product of theAk matrix with the 333 identity ma-
trix, I3. Any integral with even power of interparticle
distancerst

2n can be calculated using following expression:

rst
2n = fr 8sJst ^ I3dr gn = s− 1dnU ]ne−ar8J̄str

]an U
a=0

. sA5d

In particular, ifs; t=1, r1
2n can be generated as

r1
2n ; r11

2n = s− 1dnU ]ne−ar8J̄11r

]an U
a=0

.

Any integrals with odd power of premultipliersrst
2n−1 can be

found by using the following integral representation ofrst
−1:

rst
−1 =

2
Îp
E

0

`

dx e−x2r8J̄str . sA6d

The expression for the overlap integral of basis functions
sA4d is well known and has the following form:12

kwkuwll = kfkuflls3/2dmk+ml
sTrfJ11Akl

−1gdmk+ml , sA7d

wherekfkufll=Gf1/2guAklu−3/2 is the elemental overlap inte-
gral, andAkl

−1 is the inverse matrix. Vertical bars applied to a
matrix denote the determinant of the matrix.

In order to evaluate the structural integrals, we combine
some useful matrix properties into two theorems. Theorem
A.1 can be found in Ref. 22 and Theorem A.2 has been taken
from Ref. 23.

Theorem A.1. Let A andB be n3n matrices. Then

uA ^ Bu = uAunuBun,

TrfA + Bg = TrfAg + TrfBg.

Theorem A.2. Let G and G+H be nonsingular matrices
with H=oi=1

N Hi, C1=G, Ci+1
−1 =Ci

−1−niCi
−1HiCi

−1, ni
−1=1

+TrfCi
−1Hig and letHi be matrix of rank 1. Then

uG + Hu = uGup
i=1

N

ni
−1.

Taking into account that any premulitplier in the struc-
tural integrals can be expressed in the exponential formfEqs.
sA5d and sA6dg, and using Theorem A.1 and Theorem A.2,
the structural integral in the general form for even and odd
powerssRe=kwkur ij

2Nuwll, Ro=kwkur ij
2N−1uwlld can be reduced to

a product of derivatives of the elemental overlap integral:
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sA8d

wheren1 andn2 are defined in Theorem A.2.
Integrating and differentiating the last term insA8d with respect tob we obtain

h = s− 1dN ]N

]bNE
0

`

dx n2
3/2 = s− 1dN ]N

]bNE
0

`

dxh1 + sx2 + bdTrfC2
−1H2gj−3/2 = s− 1dN ]N

]bNsTrfC2
−1H2gd−1/2s1 + b TrfC2

−1H2gd−1

= N ! sTrfC2
−1H2gd−1/2sTrfC2

−1H2gdNs1 + b TrfC2
−1H2gd−sN+1d.

Then, settingb=0, expandingC2
−1, taking into account thatC1= In, and using Taylor expansionsA1d yields the following:

hb=0 = N ! sTrfC2
−1H2gdN−1/2 = N ! sTrfH2g − n1a TrfH1H2gdN−1/2 = N ! sTrfH2gdN−1/2o

k=0

`
sN − k + 1/2dk

k!
S− n1a

TrfH1H2g
TrfH2g Dk

.

sA9d

Now, differentiating ofn1
k+3/2ak with respect toa and recalling the Leibniz formulasA2d we obtain

z = U ]Mn1
k+3/2ak

]aM U
a=0

= Uo
m=0

M SM

m
D ]mak

]am

]M−mn1
k+3/2

]aM−m U
a=0

=Uo
m=0

M SM

m
D k ! ak−m

sk − md!
]M−ms1 + a TrfH1gd−sk+3/2d

]aM−m U
a=0

=o
m=0

M SM

m
D k ! ak−m

sk − md!
Us− 1dM−mSk +

3

2
D

M−m
sTrfH1gdM−ms1 + a TrfH1gd−sk+3/2+M−mdU

a=0

=o
m=0

M SM

m
D k ! dkm

sk − md!
s− 1dM−mSk +

3

2
D

M−m
sTrfH1gdM−m = s− 1dM−k M!

sM − kd!

GFM +
3

2
G

GFk +
3

2
G sTrfH1gdM−k. sA10d

Next, multiplying Eq.sA9d by n1
3/2, differentiating with respect toa, and applyingsA10d gives

ja=0 = s− 1dMU ]Mn1
3/2uhub=0

]aM U
a=0

= s− 1dMN ! sTrfH2gdN−1/2o
k=0

`
sN − k + 1/2dk

k!
S−

TrfH1H2g
TrfH2g DkU ]Mn1

k+3/2ak

]aM U
a=0

=N ! sTrfH1gdMsTrfH2gdN−1/2 o
k=0

minsM,`d
sN − k + 1/2dkM!

sM − kd ! k!

GFM +
3

2
G

GFk +
3

2
G S TrfH1H2g

TrfH1gTrfH2gD
k

. sA11d

Finally, substituting Eq.sA11d into Eq. sA8d we find structural integral for odd power ofr ij :
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Ro =
2

Îp
kfkufllGFM +

3

2
GsTrfH1gdMN ! sTrfH2gdN−1/2o

k=0

M SM

k
D GFN +

1

2
G

GFN − k +
1

2
GGFk +

3

2
GS

TrfH1H2g
TrfH1gTrfH2gD

k

=kwkuwllN ! sTrfH2gdN−1/2o
k=0

M SM

k
D GFN +

1

2
G

GFN − k +
1

2
GGFk +

3

2
GS

TrfH1H2g
TrfH1gTrfH2gD

k

=kwkuwllsTrfH2gdN−1/2 1

Gf3/2g
N ! 2F1F1

2
− N,− M,

3

2
,

TrfH1H2g
TrfH1gTrfH2gG , sA12d

where2F1sa,b,c,xd is the hypergeometric function.
If we remove r ij

−1 from Eq. sA8d then we can get the
formula for the structural integral with even powers in the
following form:

Re = Us− 1dM+Nkfkufll
]M

]bM fn1
−1sadg−3/2

3
]N

]aNfn2
−1sb,adg−3/2U

a=b=0
. sA13d

Applying the definition ofn2 from Theorem A.2, for the last
term in Eq.sA13d we obtain

h = s− 1dNU ]Nsn2
−1d−3/2

]bN U
b=0

= s− 1dNU ]s1 + b TrfC2
−1H2gd−3/2

]bN U
b=0

= US3

2
D

N
sTrfC2

−1H2gdNsn2
−1d−sN+3/2dU

b=0

= S3

2
D

N
sTrfC2

−1H2gdN. sA14d

Now, multiplying h by then3/2, settingC1= In, expandingn1,
results the following expression after simplification:

z = un1
3/2hub=0 = n1

3/2S3

2
D

N
sTrfC2

−1H2gdN

= S3

2
D

N
n1

3/2sTrfC1
−1H2g − n1a TrfC1

−1H1C1
−1H2gdN

=S3

2
D

N
n1

3/2sTrfH2g − n1a TrfH1H2gdN = S3

2
D

N
o
k=0

N SN

k
D

3sTrfH2gdN−ks− TrfH1H2gdkakn1
k+3/2

=S3

2
D

N
sTrfH2gdNo

k=0

N SN

k
DS− TrfH1H2g

TrfH2g Dk

3aks1 + a TrfH1gd−sk+3/2d. sA15d

Differentiatingz with respect toa and recalling the Leibniz
formula sA3d we have

ja=0 = Us− 1dM ]Mz

]aMU
a=0

= s− 1dMS3

2
D

N
sTrfH2gdNo

k=0

N SN

k
D

3S− TrfH1H2g
TrfH2g DkUo

m=0

M SM

m
D ]mak

]am

]M−m

]aM−m

3s1 + a TrfH1gd−sk+3/2dU
a=0

=s− 1dMS3

2
D

N
sTrfH2gdNo

k=0

N SN

k
DS− TrfH1H2g

TrfH2g Dk

o
m=0

M SM

m
D

3 U k ! ak−m

sk − md!
s− 1dM−mSk +

3

2
D

M−m
sTrfH1gdM−m

3s1 + a TrfH1gd−sk+3/2+M−mdU
a=0

=S3

2
D

N
sTrfH1gdMsTrfH2gdNo

k=0

N SN

k
D

3S− TrfH1H2g
TrfH2g Dk

o
m=0

M SM

m
D k!

sk − md!
Sk +

3

2
D

M−m

3s− TrfH1gd−mdkm=S3

2
D

N
sTrfH1gdMGFM +

3

2
G

3sTrfH2gdN o
k=0

minsN,Md

3SN

k
D M!

sM − kd ! GFk +
3

2
GS

TrfH1H2g
TrfH1gTrfH2gD

k

. sA16d

Finally, after substituting Eq.sA16d into Eq.sA13d, the struc-
tural integral for even power ofr ij is given by
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Re = kfkufllS3

2
D

N
sTrfH1gdMGFM +

3

2
GsTrfH2gdN

3 o
k=0

minsN,MdSN

k
D M!

sM − kd ! GFk +
3

2
GS

TrfH1H2g
TrfH1gTrfH2gD

k

sA17d

=kwkuwllGFN +
3

2
GsTrfH2gdN o

k=0

minsN,Md

3SN

k
D M!

sM − kd ! GFk +
3

2
GS

TrfH1H2g
TrfH1gTrfH2gD

k

.

ExpressionssA12d and sA17d will apply to r1 and r2, if we
set i ; j and i =1,2.

For N=1, the structural integralsfEqs.sA12d andsA17dg
have the following simple form:

Ro = kwkuwllsTrfH2gd1/2
2F1F−

1

2
,− M,

3

2
,

TrfH1H2g
TrfH1gTrfH2gG

GF3

2
G ,

Re = kwkuw,lTrfH2gS3

2
+ M

TrfH1H2g
TrfH2gTrfH1gD . sA18d
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