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We report fully nonadiabatic calculations of all rotationless bound states &faidlecular ion

(t*p*e) carried out in the framework of the variational method. We show that, in all the states,
except the two highest ones, the bond in the system can be described as covalent. In the highest two
states the bond becomes essentially ionic andl ¢8ih be described as a T+idomplex. The wave
function of the system was expanded in terms of spherically symmetric, explicitly correlated
Gaussian functions with preexponential multipliers consisting of powers of the internuclear
distance. Apart from the total energies of the states, we have calculated the expectation values of the
t-p, t-e, and p-e interparticle distances, their squares, and the nucleus-nucleus correlation
functions. ©2005 American Institute of PhysidDOI: 10.1063/1.1884602

I. INTRODUCTION in HT* than in HD", one could expect a stronger charge
polarization and a larger number of the vibrational states
The HD" molecular ion has been a model system fornear the dissociation threshold with the “ionic” character.
studies of the nonadiabatic coupling between the electronigjowever, the results of this work will show that this appears
and nuclear motions. The lack of a center of symmetry in thiswot to be the case. Apart from describing the charge asym-
system due to different nuclear masses requires that the theretry in HT*, another goal of this work has been to provide
oretical approach for calculating its stationary bound states isigh accuracy estimates of the nonrelativistic energies for all
somewhat different than that applied to the parent symmetrigotationless vibrational states of this ion, which have not
cation, H;,, where an obvious placement of the center of thebeen calculated before, except for few low lying oRé3.
internal coordinate system is the middle of the bond. Since |f the starting point of considering the HTion is its
the HT" has even larger nuclear mass difference thari,HD representation based on the BO approximation, the charge
the approach applied to both systems may be similar. Whilesymmetry in the system appears as a nonadiabatic coupling
the asymmetry of the HDsystem has been extensively in- between thejeradeand ungeradeelectronic states. The two
vestigated both experimentally and theoretically;® in-  states mix due to the coupling of the nuclear and electronic
cluding our recent work there have been only a few studies motions. The coupling increases near the dissociation limit

(only theoretical concerning the HT molecular iorf. where the dissociation energy becomes comparable to the
In a recent work Ben-ltzhakt al? studied the dissocia- total energy difference of H and T atom ground states.
tion of the electronic ground state of FiBollowing ioniza- The T atom is energetically more stable than H because

tion of HD by fast proton impact and discovered that theit has slightly larger reduced mass, which makes the average
H*+D(1s) dissociation channel is more likely than the electron-nucleus distance slightly shorter in T than in H re-
H(1s)+D* channel by about 7%. This symmetry breakdownsulting in stronger coulombic attraction and lower energy.
can only be explained if the finite nuclear mass correction torhus, upon dissociation, HTsplits into T+H" which is a
the Born—Oppenheimé&BO) approximation is taken into ac- lower-energy dissociation product thaiTH. There are two
count. In our non-BO calculatiohwe showed that while in  previous theoretical works concerning Hihat need to be
the first 21 vibrational state=1,2,...,20 only minor  mentioned. Bishdpand Bishop and Cheundjrst applied an
charge asymmetry is present in the wave functions, in thapproach to HT that did not involve the adiabatic approxi-
highest two statey=21 andv=22) HD" is strongly polar- mation and was based on the variational principle. They cal-
ized and the system can be described as a complex of D amdilated the ground and the first two excited vibrational
H* (D+H" is also the lowest energy dissociation product ofstates, as well as a few lowest rotational states of the ion.
the HD' ion). Most recently, Frolo¥ applied a fully nonadiabatic varia-

In this work we consider the charge asymmetry of thetional approach using exponential basis function with com-
HT* ion. Due to a larger mass difference between the nucleplex parameters to refine the total ground-state energies for
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the heteronuclear and homonuclear isotopomers Hfikt  ratory Cartesian coordinates. All particles present in the sys-
cluding HT". In this work we compare our energy results tem are included in the Hamiltonian. For HTt looks as

with those of Bishop and Cheung, and of Frolov. follows (in atomic units:
In the present work, we use the approach we have de- 3 3 3
veloped to perform rigorous ground-state and excited state » _ < 1 2 QiQ;
. . . . . HTOT_ 2 VR. + E 2 ’ (1)
non-BO calculations on diatomic systems with an arbitrary i=1 2M; i=1 =i Rj

number of electrons™° The approach is based on separat-
ing the operator describing the center of mass kinetic energywhere M’s, Q's, and positionsR;’'s are the masses, the
from the total Hamiltonian of the system and representingcharges, and the position vectors of the tritium nucleus, the
the remaining internal Hamiltonian in the reference frameproton, and the electron respectivélM;=m, M,=m,, Mj
centered at one of the particléim most cases the heaviest =Me, Q1=1, Q,=1, Q3=-1), and whereR; =|R;-R;| are in-
particle. In the calculation we use the explicitly correlated terparticle distances. Note that no distinction between the
n-particle Gaussian functions to expand the spatial part of thelectron and the nuclei is made and the two types of particles
wave function. No approximation is made in the approachare treated equivalently. In the next step, we transform the
apart from neglecting the relativistic effects and using a finitdaboratory coordinate system to a new coordinate system,
basis set expansion of the wave function. As we have denwhose first three coordinates are the Cartesian coordinates
onstrated on a number of cases, including, for example, theescribing the position of the center of mass in the laboratory
H, molecule!® and most recently the HDon,’ the approach coordinate system and the remaining six coordinates are in-
produces very accurate results. ternal coordinates. The internal coordinates are defined with
Since the vibrational quantum number is not a “good”’respect to a Cartesian coordinate system whose origin is
quantum number in the non-BO calculatitonly the values placed at the tritium nucleus and whose axes are parallel to
of the square of the total, i.e., electronic plus nuclear, angulaihe axes of the laboratory coordinate frame. The first three of
momentum and its projection on a selected axis are goothe six internal coordinates; =|R,~R;|, describe the posi-
quantum numbejsve need to explain what we mean by the tion of the proton with respect to the coordinate origin and
term “vibrational spectrum.” Our use of the term refers to thethe last threet,=|R3—R;|, describe the position of the elec-
ground and excited states with certain value of the total antron. Using the new coordinates, we can separate the Hamil-
gular momentum. In the present calculations this has beet®nian representing the motion of the center of mass in the
the ground rotational staté.e., the state with zero total an- laboratory coordinate system from the internal Hamiltonian,
gular momentum; the rotationless state I:||NT:I:|, thereby reducing the three-particle problem to a
In this work, we have also calculated the expectationtwo-pseudoparticle problem. The internal Hamiltonian has
values of all interparticle distancege., Iy, e andre) the following form:
and their squares for all considered states. The algorithm for EW 2 ) 5
calculating those quantities is shown in the Appendix. The  ~ 2 , dogi (ofef
comparison of thér,, ) and(r..) has allowed us to examine H=- E(% HVH * E M_lvf-vf'> + ,er_ * E .
the charge asymmetry that occurs in*HTo our knowledge,
this is the first direct calculation of these quantities for this (2)

system that uses rigorous nonadiabatic wave functions.  Thjs Hamiltonian describes a system containing the refer-
Although the present calculations have concerned thence particle(triton) at the origin of the coordinates with
whole rotationless HT spectrum, our main focus was the chargeqy=Q;=1 and two pseudoparticles, or internal par-
highest few vibrational states where the most significanticies, with reduced massesy=mm,/(m+m,) and m,
charge asymmetry is expected to occur. Thus, while all th%mtme/(mﬁme), and chargesy, =1 anpd q2=—1'.3 Thus, the
states have been calculated with very high precision, in thg,ave function describing the internal motion of the system,
hlghesF two states the number of ba§|§ function was S|gn|f|q,(r1,r2)’ is dependent on the Cartesian coordinates of two
cantly increased to improve the precision even further. Nohseydoparticles, the first resembling the proton and the sec-
only this generated b_etter energy values for those states, b_HFld resembling the electron. The second term in the paren-
also allowed to examine the convergence of the procedure ifhesis in Eq.(2) is the mass polarization term, which arises
terms of the number of the basis functions in the wave funcom the coordinate transformation and which couples the

tion expansion. Since the wave functions of the highest tWqnotion of the two pseudoparticles. In the potential energy
states contain the largest number of radial nodes, these statgs, r, and r; are defined as;=|r;|=|Ri,1~R,| and ri

were the most difficult to describe. The analysis of the Con'=|Rj+1—Ri+1| =|rj_ri|_
vergence of the energy and the averaged interparticle dis- Since the mass of the pseudoproton is much larger than
tances performed for the two states show how reliable théne mass of the pseudoelectron, all lower bound states of the
calculations are not only for those states, but also for th%ystem correspond to excitatiofeither “rotational” or “vi-
other states where, due to fewer radial nodes, the basis Sgfational) of the nuclear motion. In particular, as mentioned
size did not have to be as large. before, if the calculation is restricted only to rotationless
states(i.e., fully spherically symmetric statgsonly the vi-
brational states are obtained. In those states, higher excita-
In the approach we udé we begin with the total non- tion should generate larger numbers of radial nodes in the
relativistic Hamiltonian for a molecular system in the labo- wave function in terms of the pseudoproton coordinates.

i#] i i<y N

Il. THE HAMILTONIAN
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Another important feature of the eigenfunctions of thefunctions which are particularly strong in highly excited
Hamiltonian (2), which does not appear in the electronic states.
states, results from the repulsion of the pseudoproton with
the positive charge at the coordinate origin. Due to the repul-
sion, the wave function should significantly decrease in magp, THE VARIATIONAL CALCULATIONS
nitude when the distance of the pseudoproton to the origin
shortens. For bound states the wave function should also The ground-state and excited state nonadiabatic wave
become smaller for larger distances. In between, the vibrafunctions for HT in the present calculations were obtained
tional wave function should reach a maximumear the by minimizing the Rayleigh quotient:
equilibrium internuclear distance for the considered $tate CHAM{Ld)C
and, depending on the excitation level, it should have several E({c},{m¢,{L})= min —————— (5)
radial oscillations. The basis set used in the calculation tomd (L) €' SM (L)

should be capable of describing these features very acCyyith respect to the basis function exponential paramétgis

rately. and the preexponential powefis,}. The minimum with re-
spect to the expansion coefficients of the wave function in
terms of the basis functions, was found by solving the

Il. THE WAVE FUNCTION secular equation.

Much of the recent progress in the area of very accurate

In our previous Works_, we hffjwe shown that_the ex_phcnly non-BO diatomic calculations has been due to the derivation
correlated Gaussian basis set involving, functions with pre-

exponential multipliers consisting of the internuclear dis—and implementation of analytical gradients of the energy

. . functional (5) with respect to variational nonlinear param-
tancer, raised to a non-negative even powsy (Refs. 12 : X L
and 13 eters of the basis functions. In the minimization of the energy

functional, the availability of the analytical gradient of the
d=riexd-r'(A® 1yr] (3)  energy leads to significant acceleration of the optimization
dprocess and allows one to apply the procedure to functionals

is capable of very effectively describing nonadiabatic zer o
. : . dependent on hundreds or even thousands of variational pa-
angular momentum states of diatomic systems withlec- rameters

trons. In those functions, the combination of the preexponen- To achieve the best results in the parameter optimization

tial powers of the internuclear distance and the Gaussian &%ith the least computational effort, we have recently imple-

. . . . . ented a hybrid approach that combines the gradient based
e o e e sty EAZAon Wi he stochatcslecon mel! he
. P . P strategy is based on alternating the gradient based and the
in the central potential of the positive charge located at the . L ; . .

- . . .~ " Stochastic based optimizations in growing the basis set from
origin of the coordinate system. The exponential coefficients

) . . . a small initial set generated in a gradient based optimization
in the Gaussian(3) form the symmetric matrixd,. In our ' . . )

. : - to the final set. The basis set for each vibrational state was
calculations, this matrix is expressed as a product ohan

x 1 lower triangular matrixL, of rank n and its transpose generated in a separate calculation. To reach high accuracy in
L,L,. This is done to avoi(; dealing with constraints th,atthe calculations, we used a 1500-term expansion for the
WkOlijid need to be imposed on the e?ements of the magix ground and first excited states, a 2000-term expansions for

due to the required square itegrability of functigB8sin the v=2,3states, a 2500-term expansions for4-17states, a
optimizations of theA, matrix elements. With the use of the 3000-term expansion foy =18-20 states, a 4000-term ex-

) . . L .~ pansion forv=21 state. In the calculations for the two high-
LL, decomposition oA, the square itegrability is automati- . _
- o . est excited state =22, 23, where the charge symmetry
cally satisfied for any variation of the elementslgfin the A e .
. . . ) breaking is the most significant, we increased the length of
range[—o,]. In Eq. (3), |5 is the 3x 3 identity matrix, and . . . .
. . . . : the expansion to 5000. Having the energy determined with
in general,l, is the nxn identity matrix, © denotes the several basis set expansion lengths for the highest two states
Kronecker Product, and is a 3 X 1 vector of the internal

Cartesian coordinates of the n pseudoparticles. The fact allowed analysis of the convergence of the procedure in
1an inates pseudoparti ' terms of the number of basis functions. The calculations have
that functions(3) correspond to zero total angular momen-

. ) . . been carried out at the University of Arizona Center of Com-
tum follows from their rotational invariance.

In the HT" calculations, the spin free wave functions puting and Information Technology with the use of an HP

_ . Alpha GS1280 supercomputer.
W (r)=W(rq,r,), for all rotationless states have been gener- After the wave functions for all 24v=0, ... 23 states

ated as expansions in te”’.‘s of two-particle Gaussians of thv(\a/ere generated, we calculated the expectation values of the
form given by the expressiof8):

internuclear triton—proton distanc@,.p,), the triton—electron
K (t-e) distance(r..), and the proton—electrofp-e) distance,
W(r) =2 oxhilr). (4) (rp.e), for each state. We also calculated the average values of
K= the squares of the distances. The derivation of the formula
The powersn, ranged from 0 to 250 in the calculations. This for calculating the expectation values is given in the Appen-
rather extended range of powers was needed to accuratellx. In our calculations, we used the following values for the
represent oscillations of the vibrational part of the wavenuclear massean,=5496.921 508\, where m, stands for
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TABLE |. Total energies, expectation values of the triton-proton distangethe triton-electron distance,e, and the proton-electron distancg., and their
squares for the rotationless bound states of .HVl quantities are in atomic unitX is the number of basis functions.

v K E (Fep) (reo) (oo (rey (r2y (rhe E, other works

0 1500 -0.598 176 1345 2.051 1.686 1.687 4.252 3.525 3.528 -0.598 176 134 4% Ref. 9
-0.598 176 134 669 766 232, Ref."10

1 1500 -0.5899328137 2.161 1.744 1.745 4.802 3.811 3.816 -0.589 932 813 1% Ref. 9

2 2000 -0.582 080 048 6 2.274 1.804 1.805 5.397 4.120 4.125 -0.582 080 024 8% Ref. 9

3 2000 -0.574 606 7435 2.391 1.866 1.867 6.041 4.452 4.458

4 2500 -0.567 503 159 8 2.513 1.930 1.932 6.741 4.811 4.818

5 2500 -0.560 760 877 7 2.639 1.997 1.999 7.502 5.200 5.209

6 2500 -0.554 3727720 2.771 2.067 2.069 8.333 5.625 5.635

7 2500 -0.548 3330015 2.910 2.140 2.143 9.244 6.090 6.103

8 2500 -0.542 637011 4 3.056 2.217 2.220 10.25 6.602 6.618

9 2500 -0.537 281 546 4 3.211 2.299 2.302 11.36 7.169 7.189

10 2500 -0.532 264 693 1 3.377 2.386 2.390 12.61 7.803 7.828

11 2500 -0.527 585922 4 3.556 2.479 2.484 14.01 8.516 8.549

12 2500 -0.523 246 1480 3.750 2.580 2.587 15.60 9.328 9.372

13 2500 -0.519 2478359 3.963 2.690 2.699 17.43 10.26 10.32

14 2500 -0.515595 1217 4.199 2.813 2.825 19.58 11.35 11.43

15 2500 -0.512 2939138 4.467 2.950 2.966 22.12 12.65 12.77

16 2500 -0.509 352 167 1 4.775 3.106 3.130 25.23 14.22 14.39

17 2500 —-0.506 779939 2 5.138 3.288 3.324 29.12 16.17 16.45

18 3000 -0.504 589 807 9 5.582 3.505 3.564 34.20 18.68 19.18

19 3000 -0.502 796 855 1 6.149 3.771 3.879 41.22 22.05 23.03

20 3000 -0.501 4190149 6.925 4.097 4.345 51.82 26.74 29.19

21 4000 -0.500476 391 2 8.139 4.412 5.259 70.67 32.85 42.28

22 5000 -0.499 998 389 3 11.11 3.068 9.590 129.6 21.63 113.0

23 5000 —-0.499 917 007 3 19.91 1.729 19.72 424.4 5.706 424.2

T¢ -0.499 909 056 5 1.500 3.001

®Obtained with the following mass ratiosl,/m,=0.000 544 617m,/m,=0.000 181 920.
*Obtained withm,=1836.152 70, m=5496.921 581
°T atom in the ground state.

the mass of the electram,=1836.152 672 6. These val- high asymmetry the HTbond in this state can be described
ues were taken from CODATA 200Ref. 20 list of funda-  as ionic. In the lower states, as it was the case with thé HD
mental constants. ion, some charge asymmetry is also present in-#handp-e
distances and this asymmetry progressively increases with
the increasing excitation level. However, the'H¥ond in the
v=0-21states can still be described as mostly covalent.

In Table | we compare our variational energy values for ~ To illustrate the convergence of the energy and the ex-
the v=0—23states of HT with the energy values of some Pectation values of the interparticle distances, we show in
states available in the literature. In the same table we alsdable Il the results for the groun@ =0) and for the highest
show the expectation values of the interparticle distances aritv0 statesv =22 and 23 obtained with different basis sizes
their squares obtained in the calculations. As one could extanging from 500 to 5000. The two highest states are the
pect, the average internuclear distance increases with the rigiost difficult to describe due to the highest number of radial
ing level of excitation. This increase becomes more pro-nOdes in their wave functions and due to their significant
nounced as the excitation level approaches the dissociaticgpacial diffuseness. The results presented in Table Il show
threshold. Forv=21, v=22, andv=23 states(the highest that both the energy and the distances converged quite well.
levels corresponding to a bound statke average internu- With 1500 functions in the basis for the ground state, the
clear distance increases from 8.139 a.u. to 11.11 a.u., arghergy is converged in nine significant figures. For the high-
then to 19.91 a.u. respectively. In the-23 state, the HT  est states the number of converged figures is 8. One may
ion is only bound by & 10°® hartree and the system is al- expect that to reach a similar convergence level for all states
most dissociated. one needs to progressively increase the number of basis

Our HD' calculations demonstratedhat system be- functions going from the bottom to the top of the spectrum.
comes essentially ionic in the last two rotationless vibra-This is what has been done in the present calculations as
tional states. As the results in Table | show, the same effecthown by the number of functions used for each state shown
occurs in the HT ion, though the charge asymmetry in the in the second column in Table |. However, as the Gaussians
highest state is somewhat lower than that in the highest statre usually less effective in describing the electronic and
of HD™. In this highest state of HTthet-e average distance nuclear cusps than the other regions of the wave function,
is 1.729 a.u., while the-e distance is 19.72 a.u. Due to this there may be some residual error left in our energies. Our

V. RESULTS AND DISCUSSION
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TABLE II. The convergence of the energy and the expectation values of the interparticle distancessfeRthand 23 states with the number of the basis
functions. All quantities in atomic units.

Basis size E (Fep) (ree) (po (rey (r2y (rhe

v=0

500 -0.598 176 131 581 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
1000 —-0.598 176 134 461 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
1500 —0.598 176 134 523 2.051 46 1.685 83 1.686 77 4.251 88 3.524 75 3.528 36
v=22

1500 —-0.499 998 284 200 11.1120 3.065 97 9.592 28 129.596 21.6139 112.997
2000 —-0.499 998 357 753 11.112 3 3.066 93 9.591 62 129.617 21.6255 113.006
2500 —0.499 998 374 833 11.1119 3.067 22 9.590 90 129.607 21.628 8 112.993
3000 —0.499 998 382 517 111117 3.067 36 9.590 52 129.602 21.630 4 112.986
3500 —-0.499 998 386 283 11.111 7 3.067 39 9.590 48 129.602 21.6308 112.986
4000 —0.499 998 387 919 11.111 6 3.067 42 9.59041 129.601 21.6312 112.985
4500 —0.499 998 388 479 11.1116 3.067 43 9.590 38 129.601 21.6313 112.984
5000 —0.499 998 389 388 111116 3.067 52 9.590 29 129.601 21.6326 112.983
v=23

1500 —0.499 916 942 558 19.860 2 1.727 55 19.6718 420.994 5.683 77 420.804
2000 —0.499 916 992 542 19.917 4 1.728 51 19.728 1 424.495 5.700 50 424.289
2500 —-0.499 917 000 467 19.9138 1.728 76 19.724 2 424.349 5.703 90 424.139
3000 —-0.499 917 003 246 19.9153 1.728 80 19.7257 424.486 5.704 30 424.276
3500 —0.499 917 004 628 19.9145 1.728 84 19.7249 424.451 5.704 91 424.240
4000 —0.499 917 005 576 19.9139 1.728 89 19.724 2 424.423 5.705 46 424.212
4500 —-0.499 917 006 555 19.9134 1.728 90 19.7237 424.402 5.705 66 424,191
5000 —-0.499 917 007 306 19.9130 1.728 93 19.723 2 424.383 5.705 96 424.171

estimation for that error in the=22 state of HD with 4000  also called, the nucleus-nucleus correlation fungtioased
terms in the basis was about2Martree(see Table Il in Ref. on the wave function obtained in the non-BO calculation.
7). An error of the same order of magnitude is probably alsolThe pseudonucleus density is defined as

present in our 5000—term energy results fordl22 and 23

states of HT. =(V(r)|8(ry— &|¥(r) :J W(&,r)[2dr,. 6)
The lower effectiveness of Gaussians in describing the 9(8) = (T Ololrs = PR [¥(grofr, (

cusps is also likely to be partially responsible for the differ- i o )
ence between our ground state energy and the value recenﬂ—f/]e algorithm has been applied in this work to show the

. . i
reported by Frolov? who used complex exponential basis p§eudoproton density for different states of the Han ".1
Figs. 1 and 2 we show the pseudoproton densities in the

functions, and shown in Table I. In order for our ground_Statetwo-dimensiona(ZD) and 3D forms for a few states from the
%ottom, middle, and the top of the spectrum. We included
. . oth 2D and 3D plots because, while the former better show
from double(15 digity to quadruple. This would make the the radial behavior of the pseudonucleus density, the latter

optimization less affected by the numerical noise and MO%etter demonstrate the spherical radial symmetry of this

effective. There is another source of the discrepancy betweeé“.l antity. In the highesty =23, state the wave function and

FroIO\_/'s ground-state energy and ours. It is due to the diﬁer'thus, the density have 23 radial nodes. Judging from the
ence in the proton and triton masseee used the most cur- energy values, the Gaussian basis set we use is capable of
rent ones, which are slightly lighter leading to our ground-eqcribing this very complicated nodal structure very well.
state energy being slightly higher than Frolgv® order to  one might be somewhat surprised by the fact that in Fig. 1
test how much of a difference this would make, we recalcusg, the y =23 state the curve does not touch thaxis before
lated the energies of all states using the masses given e |ast oscillatior(see the enlarged fragment of the plot
Frolov's paper and we found that our result for the ground- oy interpretation of this effect is the following. In the
state shifts down by about>410™** hartree. The shift in-  non-Born—Oppenheimer calculation the wave function de-
creases with the excitation level and reaches a maximum f(g'cribes simultaneous motion of nuclei and e|ectr(mr$ as
the states in the middle of the spectrin®11—13 where it should be more correctly described, the motion of pseudonu-
becomes approximately equal to<407'° hartree. For the clej and pseudoelectronObviously, the wave function for
highest levels the shift again becomes smaller, by an order ahe highest state has to be orthogonal to the wave functions
magnitude. This behavior is expected as it is known that thef all lower states. For rotationless states this orthogonality
nonadiabatic effects are the most significant in the middle otan be achieved by the wave function for the highest state
the vibrational spectrum. having the highest number of radial nodes. As mentioned
In our recent work" we developed an algorithm to cal- before, the radial nodes can appear in the wave function for
culate and plot the pseudonucleus density; as it can be HT* in terms of the pseudoproton coordinaebut one can-

increase the precision of real numbers in our calculation
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butions, one with 23 nodes in termsmfand the second one
with a node in terms of, and fewer nodegor even no
nodes in terms ofr,. This is a possible explanation of why
we see some upshift of the density function away fromghe
axis at the last node for the=23 state. If this explanation is
correct, the effect is purely nonadiabatic beause it results
from mixing of two electronic states.

VI. SUMMARY

In this work, rigorous, variational, high accuracy, nona-
diabatic calculations employing explicitly correlated Gauss-
ian basis functions have been performed for the' ibh to
determine its complete vibrational spectrum corresponding
to zero rotational quantum number. This is the first work
reporting non-BO energies for all the vibrational states of
this system. The wave functions obtained in the calculations
were used to determine expectation values oftpgt-e, and
p-e distances. Those values showed that, while the bond in
HT* in the lowest 22 vibrational states can be described as
covalent, in the highest two states it becomes ionic. In those

FIG. 1. Correlation functions for the ground state and for the 4, 9, 21, 22gtates the ion becomes a complex of[if.+n v=23 state the
and 23 excited states of HT

electron becomes entirely localized around the tritium
nucleus and almost completely absent at the proton. This

not exclude a possibility that, especially for the higheststrong, purely nonadiabatic effect occurs when the dissocia-
states, there may be a component in the wave function with ilon energy of a vibrationally excited state becomes close to

node in the pseudoelectron coordinaself this is the case

the difference between the total energies of the H and T

the density for they=23 state will be a sum of two contri- atoms.

v=0

FIG. 2. 3D plots of the correlation functiong(é,, &, &=0), for the ground state and for the first, second, and fourth excited states*ogHand &, (x and
y axis, respectivelyare in a.u.
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APPENDIX: STRUCTURAL INTEGRALS (20 = 20— (_qn ettt
1 11 aan

=0
First, let us recall some definitions and theorems con- “

cerning matrix properties, which we will use in the deriva- Any integrals with odd power of premultipliers!* can be
tion of the distance matrix elements. found by using the following integral representannrg’f
The Taylor expansion has the form

w f(”)(x ) r;tlz %f dx e‘xzr/Js{_ (A6)
f00 =2 — = (x=x)". (A1) o

=0 T The expression for the overlap integral of basis functions
The Pochhammer symbol is defined as (A4) is well known and has the following forr:
@ ﬁl(a o~ F[Fa[ +n] ) (ode = (A ¢|>(3/2)mk+m|(Tr[allAk|1])”k+m'. (A_?)

k=0 aJ where{ | #)=IT1/2]|Aq|"*? is the elemental overlap inte-

gral, andA{ is the inverse matrix. Vertical bars applied to a
matrix denote the determinant of the matrix.
In order to evaluate the structural integrals, we combine
N some useful matrix properties into two theorems. Theorem
(N)f(N_k)g(k) A.1 can be found in Ref. 22 and Theorem A.2 has been taken

where(a)g=1, andI'[x] is the Euler gamma function.
We will use the Leibniz formula to determine tith
derivative of the product of functionsandg:

(fogN =2 (A3)  from Ref. 23.

=0 Theorem A.lLet A andB be nX n matrices. Then
Also, we will use a rank ond;; matrix, which is defined

—_ n n
e A®B|=|A"BI"
_ {En ifi=j Tr[A+B]=Tr{A] + T1[B].
T T
Bi+By—B-F fi#], Theorem A.2Let G andG+H be nonsingular matrices
whereE; is thenx n matrix with 1 in itsijth position and ~ with H=X{, H;, C;=G, C5=C{'-»CI'H,C(Y, y'=1
0’s elsewhere. +TrCl 14,7 and letH; be matrix of rank 1. Then
The basis functions, which have been used in our calcu- N
lation have the form IG+H|=|c|[] +*
A i=1
o) = [r2Me™ AT = [riMghy), (A4) I

Taking into account that any premulitplier in the struc-
WhereAk is a symmetric and positive definite matrix of non- tural integrals can be expressed in the exponential f&gs.
linear variational parameters. The notatﬁnpdenotes a Kro- (A5) and(A6)], and using Theorem A.1 and Theorem A.2,
necker product of thé\, matrix with the 3x 3 identity ma-  the structural integral in the general form for even and odd
trix, s Any integral with even power of interparticle powers(Re=(eri"|e), Ry=(eyri" ‘) can be reduced to
d|stancer can be calculated using following expression: a product of denva‘uves of the elemental overlap integral:

M
— e N,
—<<Pk|r2N ]‘<Pz> = <e_r,A"r‘V i+ m) ZZJN ,_,l‘e_r,A’r> <¢k|”2M IZ]N 111’¢1>
&M &N 2 * g 7 27
— ( 1)M+N _f dx e ® (@] 1 +BJjtx"T;)r
da 0BN<¢k|\/7_T 0 14 —
_ M+N_~_ 2 M & -t (Agral; +02+ P )r
(-1 \/~ an N dx dr j
da” 9B a=p=0
2 # ”
= ( 1)M+N N773n/2f dx|Ak1+ CYJ]I + (x + B)Jl | 172
Jada™ o _
2 M &
= (- 1M — N dx ™AL, +aJ11Akl + (2 + B, Akll| ke
f&an (9,8 a=p=0
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o Hy

7
- - 1)M+N\/_<¢k[¢l>aaM(9,8N f il + A+ (54 B A

a=P=0

2 M &N (7
_ ( 1)M+N<¢k|¢l>\/_0aM(9l8NJ dx|I +aH1+(x +,3)H| -3/2

a=P=0

2 M N[
= (_1)M+N<¢k|¢l>\/_77Wa—/BIVJO dx[ v (a)v3' (2, B,a) ]2
a=£=0

s

a=p=0 (A8)

;N (o
= 1N ) e aM[ G f v (. B.a)] "
wherev; and v, are defined in Theorem A.2.
Integrating and differentiating the last term (iA8) with respect toB8 we obtain

N N
&IBNJ dx v 3/2 ( 1)N BN

=N (T HD) ™ YATHC H)NL + B Tr{CMH, )N,

= DN f L+ 6 + BTIC; Hgl 2= (- D N(Tf[Clez]) 121 + B TH{CH,)

Then, setting3=0, expandingpgl, taking into account that,=I,, and using Taylor expansiar1) yields the following:

sz (N-k+ 1/2)k<_ ) Tr[HlHZ])k

Mp=0=N1(TICFHD)N V2= N1 (Tr[Hz] = vya Tr{HH DN 2= N1 (Tr[H DN | @
‘=0 k! Tr[H,]
(A9)
Now, differentiating oka+3/2 K with respect toa and recalling the Leibniz formuléA2) we obtain
(9M V§+3/2ak M (M ) £7mak aM—mVli+3/2 M (M ) Kl ak—m 07M_m(1 +a Tr[Hl])-(k+3/2)
0= T o Z‘O g™ gaM™ | (k= m)! gaMm o
E ( ) k " M 3 M (k+3/2+M-m)
= (-1 ‘m(k+—) (TrHDM™AQ + & Tr{H )™ -m
k=m)! 2 [Hi] [Hi] Y
3
M Kl 5, 3 M1 F|:|V| + §:|
=E ( ) (=M m<k+ -) (TrIH DM ™™= (- PV —— (Tr[HM ™ (A10)
(k=m)! 2/ e (M- K)! 3
' k+—=
2
Next, multiplying Eq.(A9) by 32, differentiating with respect te, and applying(A10) gives
M3 4 S (N=—Kk+1/2) [ TrHH,]\k Mik2ak
o= (DM R = (- DM (THH, )Y - =32 .
éa—O ( ) da M o ( ) ( r[ 2]) kE:O Kl Tr[Hz] 6’aM o
M+ 3
min(M, ) -
~ (N=k+ 1/2),M! 2 ( Tr[H,H,] )k
=N (THH DM (T H N2 ALl
(TTHDMTHDY Y2 X AT (A11)

< (M=K !k F{k+§J
2

Finally, substituting Eq(A11) into Eq. (A8) we find structural integral for odd power of:
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M

Ro= \%T<¢k| ¢|>I‘[M + g} (THH YN (T H, YNV,

-]

N

J. Chem. Phys. 122, 164302 (2005)

fo]

( Tr{H;H,] )k
N—k+}JF{k+§J TriHTH,]
2 2

" |v|
=(@ @IN (T H, )N Y2Y] (

k=0

R

1
=l TMTHDN 2Ny ZFl{E N

where,F,(a,b,c,x) is the hypergeometric function.

Tr[H;H,] )k
J Tr{H, T H,]

Tr[H;H,] }
"Tr{H]Tr[H,]

(A12)

Differentiating £ with respect tox and recalling the Leibniz

If we removeral from Eg. (A8) then we can get the formula(A3) we have

formula for the structural integral with even powers in the

following form:

M

BM [Vl 1( a)]—3/2

(9N
P R

Re= (- D)MN eyl p

(A13)

:’B:O

Applying the definition ofv, from Theorem A.2, for the last

term in Eqg.(A13) we obtain

(3’N(V 1) 3/2
=(-N 2\
n=(-1) B | o
o a(1 + B Tr[CH,]) 32
apN B=0

(g) (TG Ha) (w092
N =0

(§> (TG H DN, (A14)
2/n

Now, multiplying # by the v*2, settingC,=1,, expandingy;,
results the following expression after simplification:

U~
1

3/27l|,6 0=V ( ) (Tr[C3HDN

3 _ _ _
(5) VATIC*H,] - vya T C{™H,C H, DN
N

3 ST
:(§>Nv§’2(Tr[H2] ~na T[HH)"= (§>Nk2:o< k )

X(Tr[H])N (= Tr[H,H,])kakvkt32

:(§> (TI’[HZ])NEN: (N)<M>k
2/N keo \ K

Tr[H,]
X (1 +a Tr[H,])~ 32, (A15)

§a=0 = (_ 1)Mm

M¢

3 NN
S (- 1)M(5>N(Tr[H2DNk2:o< ) )

(S

Tr[H,] — da™ gaM™m

X(1+a Tr{H,))~*32

a=0
- THH,H,] |k (M)
(2 ) T 3
k! okm i 3 .
G DY (k+ é)M_m(Tr[Hl])M
X(l + Tr[Hl])—(k+3/2H\/I—m)
a=0
- 3 M N . N
=\ 5 ) (TTHDM(THD)VY
2 N k=0 k
g e
X( Tr[H,] zo m/ (k—m)! I(+2 M=-m
_ 3 3
X (=Tr[Hq]) m5km=<‘) (Tf[Hl])MF{M + —}
2/N 2
min(N,M)
X(TIH DY X
k=0
N m! Tr{H,H] |\
X( ) ( ) (A16)
k (M—k)!F{k+gJ THH,ITr{H,]

Finally, after substituting EqA16) into Eq.(A13), the struc-
tural integral for even power

af; is given by
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Re= (¢ ¢|>(g) (Tr[Hl])MF|:M + g}(Tr[Hz])N
N
min(N,M) N M1
X2 (k) (

k=0 _ 3
(M=Kk)! F{k+ ZJ

Tr[H,H,] )k
Tr{H]Tr[H,]

(A17)

3 min(N,M)
:<<Pk|<P|>F[N+§](Tf[H2])N >
k=0
X(N) M! ( Tr[H,H,] )k
K { 3J T H T H,]/
k+§

(M-Kk!T

ExpressiongA12) and (A17) will apply to ry andr,, if we
seti=j andi=1,2.

ForN=1, the structural integral€qgs.(A12) and(A17)]
have the following simple form:

13 Ti[HH,
ZFl{ 2’ M'z’Tr[Hl]Tr[Hz]]

H
1" —_
2
Tr[HH,] )
Tr[HoITr{H.]/

Ro = (@ @) (TITH,]) Y2

3
Re=<90k|<Pe>Tr[H2]<§ +M (A18)
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