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In this work we report very accurate variational calculations of the complete pure vibrational spec-
trum of the D, molecule performed within the framework where the Born-Oppenheimer (BO) ap-
proximation is not assumed. After the elimination of the center-of-mass motion, D, becomes a three-
particle problem in this framework. As the considered states correspond to the zero total angular
momentum, their wave functions are expanded in terms of all-particle, one-center, spherically sym-
metric explicitly correlated Gaussian functions multiplied by even non-negative powers of the in-
ternuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations
are corrected for the relativistic effects of the order of a? (where a = 1/c is the fine structure con-
stant) calculated as expectation values of the operators representing these effects. © 2011 American

Institute of Physics. [doi:10.1063/1.3625955]

. INTRODUCTION

Quantum electrodynamics'~ provides a general theoret-
ical framework for calculating energies of stationary bound
states of atoms and molecules with a very high accuracy. In
this framework an effective perturbation approach has been
developed to account for relativistic effects in small systems.
The zero-order level in this approach is the nonrelativistic
Schrodinger equation. In this theory the relativistic correc-
tions are proportional to different powers of the fine structure
constant ¢« (in atomic units « = 1/c where c is the speed of
light). In this work the zero-order approximation is the non-
relativistic Schrodinger equation with the Hamiltonian rep-
resenting the internal motion of the electrons and nuclei in
the system obtained without assuming the Born-Oppenheimer
(BO) approximation. In the calculation of the relativistic cor-
rections we only consider terms proportional to o”.

Treating the nuclei and electrons on equal footing and
not assuming the clamped nucleus approximation makes the
problem of calculating stationary, bound states of a molecular
system much more complicated than the problem of determin-
ing bound states of electrons in the field of stationary nuclei.
The main complication comes from the need to describe not
one type of the correlation effects, i.e., the electron-electron
correlation, but three types, the electron-electron, nucleus-
nucleus, and nucleus-electron correlations. This places addi-
tional demands on the basis functions which are used in ex-
pansions of the wave functions representing those stationary
states. Also, as the purpose of a non-BO calculation is to de-
scribe the system with very high accuracy, the basis functions
have to capable of providing very accurate representations of
the wave function.
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We use the so-called explicitly correlated Gaussian
functions (ECGF) in this work. It has been shown that ex-
ponential dependence on the inter-particle distances of these
functions is very effective in describing the inter-electron
correlation effects. The functions are also adequate for
describing the nucleus-electron correlation effects. However,
the strong nuclear-nuclear correlation is more difficult to
describe, because it requires that the wave function practi-
cally vanishes when two nuclei approach each other very
closely. This behavior, which happens to much lesser extend
for electrons, can be described by inclusion of powers of
the internuclear distances as pre-exponential multipliers in
the ECGFs.*® For diatomic systems the multipliers include
powers of only one distance — the internuclear separation.
These type of functions have been shown to very effectively
represent zero-angular-momentum bound states of small
diatomics.”® In this work they are used for expanding the
wave functions for all bound rotationless states of the D,
molecule. These states are also called pure vibrational states,
as their wave functions differ by the number of nodes they
have in terms of the internuclear distance. The ground state
has no nodes. However, as the level of excitation increases,
states, whose wave functions have some small contributions
from functions with nodes in terms of the electron-nucleus
and electron-electron coordinates, may also appear. This
effect is called state mixing in the approach based on the BO
approximation. As in our approach no restrictions (other than
the permutational symmetry restrictions) are placed on the
wave function, the state mixing is automatically permitted
to occur in the calculation. With that, very high accuracy
solutions of the nonrelativistic problem can be obtained.

In recent years we have reported several non-BO calcula-
tions on small molecules including D,.? The D, calculations
were done with only 512 ECGFs. Recently we also calcu-
lated the lowest two D, pure vibrational states using much
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more extended basis sets of 10 000 ECGFs.!” In this work
10 000 ECGFs are used to calculate all 22 pure vibrational
states of the D, molecule.

The non-BO calculations presented in this work have
been performed using the non-relativistic Hamiltonian
obtained by rigorously separating out the motion of the
center of mass from the laboratory-frame Hamiltonian. The
“internal” Hamiltonian obtained this way is rotationally
invariant and its eigenfunctions transform according to the
irreducible representations of the group of 3D rotations
(SO(3)). In particular, the ground state or any rotationless
J =0 state of a system with positive (natural) parity is
represented by a spherically symmetric s-type wave function,
which can be expanded in terms of spherically symmetric
ECGFs. All zero-angular-momentum bound states (i.e., the
pure vibrational states) of D, are such states.

As mentioned, the leading relativistic corrections of the
order of a? are calculated in this work for the considered
states. The algorithms for calculating these corrections using
the non-BO wave functions expanded in terms of ECGFs were
presented in our previous works.!!13

There have been some very accurate calculations per-
formed on D, by others. Wolniewicz calculated vibrational
energies of D, using the conventional approach where the BO
potential energy curve (PEC) of H, was calculated first, and,
after adding to each PEC point the adiabatic, nonadiabatic,
relativistic, and radiative corrections, it was used to calcu-
late the vibrational energy levels.'* A similar approach was
also recently applied by Piszczatowski et al."” to calculate the
dissociation energy of D, with very high accuracy. This was
achieved by including not only o relativistic corrections but
also the quantum electrodynamics corrections of the order o’
and a* (only the one-loop term).

In Sec. II, we briefly describe the method used in the cal-
culations (a more complete description of the method can be
found in our recent reviews*?>). The results obtained in the
calculations are presented and discussed in the last section.

Il. THE METHOD USED IN THE CALCULATIONS

In this work we consider all existing 22 bound rotation-
less states of the D, molecule. Each state has been calcu-
lated independently. The conventional Rayleigh-Ritz varia-
tional method has been employed to minimize the energy
and to optimize the wave function for each state. The energy
is determined using the internal nonrelativistic Hamiltonian,
Hyonrel, Obtained by explicitly and rigorously separating out
the center-of-mass motion from the laboratory-frame Hamil-
tonian. The internal Hamiltonian for D, has the following
form:

3
I:Inonrel = _% Z + Z Z _vl‘, vrj
i=1

i=1 j#i

QOq: qqu
(D
= J

In Eq. (1), go = q1 = 1 are the charges of the nuclei and
q>» = q3 = —1 are the electron charges, r;, i = 1, 2, 3, are the
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position vectors of the second nucleus and the two electrons
with respect to the first nucleus (placed in the center of the
internal coordinate system; we call this nucleus the “ref-
erence particle”), r; are their lengths, r;; = |r; —r;|, mg
=m; = 3670.4829654m, are the deuteron masses,
my=m3=m,=1 are the electron masses,'® and
Wi = mom;/(myg+m;) is the reduced mass of particle
i. One can describe Hamiltonian (1) as representing three
“pseudoparticles” with charges equal to the charges of the
original particles, but with masses changed to the reduce
masses, moving in the central potential of the charge of the
reference particle. The motions of the three pseudoparticles
are coupled through the Coulomb interactions and through
the so-called mass-polarization terms.

The Breit-Pauli Hamiltonian and the first-order perturba-
tion theory have been used to calculate the relativistic correc-
tions of the order of «?. This approach has been employed
by others in very accurate calculations of light atoms and
molecules before.'’~!° The Breit-Pauli relativistic operators
representing the mass—velocity (MV), Darwin (D), spin-spin
(SS), and orbit-orbit (OO) interactions used in the present
work were derived starting from their representations in the
laboratory coordinate frame and transforming them to the in-
ternal coordinate system described above.'!:!> Due to the sin-
glet states of both electrons and nuclei, the spin-orbit inter-
action and the interaction between the nuclear spins and the
electron spin vanish. The MV, D, SS, and OO operators ob-
tained after the transformation to the internal coordinate sys-
tem for D, have the following form (in the Darwin term, the
nuclear contributions proportional to the reciprocals of the
squares of the nuclear masses are not included due to their
very small contributions):

[a) £ o

B = ——
" 8 mO i=1 i=1
== Z . - q8>(ri) + ¢8> (r1)]
2
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The total first-order relativistic correction is calculated
for each state as the expectation value of o? H,e) with the non-
BO nonrelativistic wave function of that state, where

H. = Hwy + Hp + Hss + Hoo. (6)
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TABLE I. Total non-BO nonrelativistic energies and energies obtained by
adding the leading «? relativistic corrections (Erel = Enonrel + 02({(Hwv)
+ (Hp) + {Hss) + (Hoo)) to the non-BO energy values for pure vibrational
states of the D, molecule. The dissociation threshold (D + D) is given at the
bottom. All values are in hartrees. Estimates of the remaining numerical un-
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TABLE II. Dissociation energies for the pure vibrational states of D, cal-

culated using the nonrelativistic energies (E

1) and the energies

obtained by adding relativistic «® corrections to the nonrelativistic energy

values (E

1)- All values are in cm

certainty (due to finite size of the basis used) are shown in parenthesis. v nonrel rel
) Enonrel Erel 0 36 749.0910(0) 36 748.5620(2)

1 33 755.4760(0) 33 754.9294(2)
0 —1.16716880921(5) —1.16717971193(5) 2 30 880.9728(1) 30 880.4110(2)
1 —1.15352889591(50) —1.15353971805(50) 3 28 123.4893(2) 28 122.9153(3)
2 —1.14043169537(100) —1.14044244842(100) 4 25 481.3723(3) 25 480.7887(5)
3 —1.12786767622(100) —1.12787837355(100) 5 22 953.4288(5) 22 952.8389(5)
4 —1.11582930519(200) —1.11583995906(200) 6 20 538.9564(5) 20 538.3628(5)
5 —1.10431114712(200) —1.10432177246(200) 7 18 237.7839(10) 18 237.1901(10)
6 —1.09331000143(300) —1.09332060978(300) 8 16 050.3236(10) 16 049.7328(10)
7 —1.08282508802(300) —1.08283569562(300) 9 13 977.6379(20) 13 977.0537(20)
8 —1.07285828595(300) —1.07286890668(300) 10 12 021.5262(20) 12 020.9527(20)
9 —1.06341443481(500) —1.06342508584(500) 11 10 184.6352(30) 10 184.0760(30)
10 —1.05450173416(500) —1.05451243405(500) 12 8470.5930(30) 8470.0542(30)
11 —1.04613224297(500) —1.04614300779(500) 13 6884.1812(50) 6883.6666(50)
12 —1.03832249181(500) —1.03833334970(500) 14 5431.6065(100) 5431.1227(100)
13 —1.03109426783(500) —1.03110523607(500) 15 4120.6969(100) 4120.2505(100)
14 —1.02447585067(500) —1.02448695897(500) 16 2961.3882(100) 2960.9869(100)
15 —1.01850290707(1000) —1.01851418581(1000) 17 1966.1595(100) 1965.8126(100)
16 —1.01322070784(1000) —1.01323219244(1000) 18 1150.7338(200) 1150.4515(200)
17 —1.00868611256(1000) —1.00869784448(1000) 19 534.9367(200) 534.7320(200)
18 —1.00497075927(3000) —1.00498278591(3000) 20 143.5714(200) 143.4590(200)
19 —1.00216498142(3000) —1.00217736172(3000) 21 1.6500(400) 1.6403(400)
20 —1.00038178995(3000) —1.00039459041(3000)
21 —0.99973514848(10000) —0.99974841717(10000)
D+ D? —0.99972763049 —0.99974094333

“The relativistic corrections for the D atom are calculated analytically using the
exact nonrelativistic ground state wave function, ¥ (r1) = /(u3/m)e "1, where
w=mom;/(mom;) is the reduced mass of the system (mo is the nuclear
mass and m; is the electron mass). The corresponding expressions are (Hnv)
= —(5/8)((1/m3) + (1/m3Np*, (Ap) = 113 /2m2, and (Aoo) = —u3 fmom).

Due to the dependence of the relativistic operators and the
non-BO wave function on the nuclear masses the total rela-
tivistic correction also depends on those masses.

As mentioned, in expanding the spatial parts the D, non-
BO wave functions we use one-center, spherically symmetric
ECGFs that include even non-negative powers of the internu-
clear distance, ry, as pre-exponential multipliers:®

¢ =" exp[—r'(Ax @ L)r], @)

where r = {r, r}, r;}’ and prime (') denotes the vector (ma-
trix) transposition. The powers of m; ranged from 0 to 250 in
the present calculations.

The proper permutational symmetry is imposed on basis
functions (7) before they are used to expand the wave func-
tion. As we are concerned with states which have singlet mul-
tiplicities for the electrons and the nuclei, each basis func-
tion is made symmetric with respect to the permutation of
both the electrons and nuclei. Since the transformation be-
tween the laboratory and the internal coordinates is linear,
the symmetrization operators, which originally are defined
with respect to the laboratory coordinates, can be expressed
in terms of the internal coordinates and directly applied to
functions (7).°

As mentioned, 10 000 ECGFs have been used in the
present calculations to expand the wave function of each
state. These functions have been extensively optimized using
the variational energy minimization applied independently to
each state. The ECGFs used in the calculations have to be
square integrable. This automatically happens if Ay is repre-
sented in Cholesky-factored form, Ay = Ly L}, with L, being
a lower triangular real matrix. Thus, the elements of the L
matrices have been the nonlinear parameters optimized in the
variational energy minimization. This optimization has been
the most time consuming step of the calculations. We used the
analytical gradient of the energy functional determined with
respect to the L matrix elements to expedite the optimization
process.

In the calculations of the lowest fifteen states the starting
basis sets were taken from our previous calculations of H,,%°
where both L; and m; parameters were optimized, and only
the L parameters in those functions have been reoptimized to
adjust the functions for the change of the nuclear masses. The
justification of such an approach is based on the observation
made by analyzing the H, basis sets which showed that, while
for the first few states the m; powers in the pre-exponential
multipliers are mostly smaller numbers in the 0-250 range of
numbers used in the calculations, the powers for higher states
are approximately evenly distributed in the whole range of the
allowed powers. That observation was also utilized in gener-
ating the initial basis sets for states 16-22 in the D, calcula-
tions. This was done by using the basis set of the 15-th state
obtained after several optimization cycles to initiate the op-
timization of the basis set for the 16-th state, then using the
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TABLE III. Some expectation values calculated for the pure vibrational states of the D, molecule with the non-BO nonrelativistic wave functions expanded
in terms of 10 000 explicitly correlated Gaussians. (rg—q), (rq—), and (r.—.) denote the deuteron-deuteron, deuteron-electron, and electron-electron distances,

respectively. All values are in a.u.

2

v frea) (frmd (fred)  Gaed) () () (r3_g) (r3_.) (R 00y (o)
1 0.703846  0.904959  0.581653  1.434562  1.567223 2.191855 2.077687 3.113364 5.754556  0.226936  0.016328
2 0.684680  0.890653  0.570874  1.502127  1.602852 2.236727 2.316156 3.265511 5.997527  0.222025  0.015565
3 0.665885  0.876702  0.560058  1.571586  1.639355 2.283476 2.571477 3.425548 6.255319  0.217340  0.014828
4 0.647400  0.863075  0.549166  1.643193  1.676851 2.332396 2.845420 3.594384 6.530145  0.212871  0.014110
5 0.629160  0.849743  0.538154  1.717255  1.715486 2.383841 3.140132 3.773132 6.824705  0.208612  0.013414
6 0.611092  0.836671  0.526971  1.794147  1.755439 2.438243 3.458252 3.963165 7.142316  0.204548  0.012727
7 0593119  0.823824  0.515558  1.874335  1.796932 2.496127 3.803060 4.166195 7.487102  0.200661  0.012058
8 0.575154  0.811163  0.503847  1.958396  1.840244 2.558144 4.178687 4.384389 7.864235  0.196976  0.011392
9 0.557096  0.798643  0.491757  2.047064  1.885728 2.625111 4.590421 4.620525 8.280291  0.193449  0.010734
10 0.538831  0.786213  0.479190  2.141277  1.933838 2.698058 5.045138 4.878217 8.743744  0.190067  0.010078
11 0.520220  0.773812  0.466027  2.242258  1.985167 2.778314 5.551952 5.162256 9.265694  0.186849  0.009421
12 0.501095  0.761370  0.452120  2.351628  2.040503 2.867616 6.123199 5.479119 9.860968  0.183759  0.008762
13 0481249  0.748795  0.437284 2471590  2.100916 2.968288 6.776018 5.837786 10.549831  0.180824  0.008084
14 0460419  0.735972  0.421282  2.605204  2.167893 3.083515 7.534925 6.251058 11.360775  0.177998  0.007395
15 0438259  0.722753  0.403801  2.756873  2.243577 3.217807 8.436292 6.737855 12.335263  0.175311  0.006678
16 0414306  0.708932  0.384415 2933191  2.331170 3.377814 9.536668 7.327438 13.536448  0.172736  0.005929
17 0387912 0.694220  0.362526  3.144567  2.435733 3.573883 10.929300 8.067789 15.066291  0.170254  0.005138
18  0.358112  0.678181  0.337240  3.408708  2.565866 3.823364 12.781204 9.044318 17.103538  0.167875  0.004292
19 0.323360  0.660102  0.307106  3.759177  2.737877 4.158757 15.429630  10.428375 20.001659  0.165568  0.003378
20 0.280825  0.638647  0.269432 4271936  2.988720 4.652997 19.702832  12.638119 24.612108  0.163326  0.002371
21 0.223746  0.610540  0.217652  5.192368  3.438149 5.541074 28.620254  17.189291 33.987924  0.161132  0.001252
22 0.112976  0.556221  0.112436  9.854482  5.7732263  10.072395  105.938573 ~ 55.958972  111.879887  0.159124  0.000104

16-th state basis for the 17-th state, and continuing this proce-
dure until the last 22-th state was calculated.

The optimization of the basis set for each state has been
carried out by cycling over all functions in the set multiple
times and reoptimizing the parameters of only one function at
a time. We found such an approach most effective for large
basis sets. After the basis sets and the corresponding non-BO
wave functions have been generated for all states the relativis-
tic corrections were calculated. The sums of the nonrelativis-
tic total energies and the relativistic corrections were subse-
quently used to calculate the D, dissociation energies corre-
sponding to all 22 states.

lll. THE RESULTS

In Table I we present the total nonrelativistic energies
of all 22 pure vibrational states of D, obtained in the cal-
culations. Based of the energy convergence patterns for the
different states, we estimated numerical uncertainties of the
energy values and these estimates are shown in the table in
parenthesis next to the respective energies. As one can see,
the convergence is noticeably better for the lower states than
for the upper states because of the increasing number of the
radial nodes, which becomes more difficult to describe with
the same number of basis functions. In Table I we also show
the total energies of the states with the leading o relativis-
tic corrections (MV+D+4SS+00) added to the nonrelativis-
tic non-BO energies. The exact total nonrelativistic energy
and the exact energy which includes the o relativistic cor-
rections are also shown in the table for two isolated D atoms.
In Table II D, dissociation energies corresponding to the 22
states are presented. For each energy value we provide an esti-

mate of the error, which is due to the basis-set incompleteness.
This incompleteness rises with the excitation level.

There is no doubt that the present non-BO calculations
have been converged to a very high accuracy at the nonrela-
tivistic level. Also, by explicitly including the finite nuclear
masses in the calculations, the finite-mass effects (both adia-
batic and nonadiabatic) are accounted for to high precision in
the energy and the wave function. The finite-mass effects are
also explicitly included in the calculations of the relativistic
effects (the so-called recoil effects).

Finally, the nonrelativistic non-BO wave functions ob-
tained for the 22 rotationless states of D, have been used
to determine some commonly calculated expectation val-
ues. The results are shown in Table III. As expected the
D, bond elongates as the vibrational excitation increases.
The deuteron-electron and electron-electron expectation val-
ues elongate too. It is interesting to examine the expectation
values for the highest bound vibrational state. This state is
only bound by less than two wavenumbers. For this state the
average internuclear distance is almost two times larger than
for the next lower state. Same is true for the deuteron-electron
and electron-electron average distances. These results indi-
cate that, as this state is very close to the dissociation thresh-
old, it may involve a higher level of coupling of the motions
of the electrons and the nuclei. Such coupling is automatically
included in our calculations.

IV. SUMMARY

In this work we present very accurate non-BO cal-
culations of the whole pure vibrational spectrum of the
D, molecule. A basis set of 10 000 explicitly correlated
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Gaussian functions with extensively optimized exponential
parameters is used in expanding the wave function of each
state. The non-BO wave functions are used to evaluate the
leading «? relativistic energy corrections. These corrections,
along with the non-BO nonrelativistic energies, are then used
to calculate the dissociation energy corresponding to each
state. As the expected accuracy of these energies is very high,
they may provide useful benchmark values for conventional
calculations performed using the approach based on the po-
tential energy cure.
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