
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 465306 (9pp) doi:10.1088/0953-8984/22/46/465306

Calculation of transmission probability by
solving an eigenvalue problem
Sergiy Bubin and Kálmán Varga
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Abstract
The electron transmission probability in nanodevices is calculated by solving an eigenvalue
problem. The eigenvalues are the transmission probabilities and the number of nonzero
eigenvalues is equal to the number of open quantum transmission eigenchannels. The number
of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to
the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission
matrix). The method is implemented on a real space grid basis providing an alternative to
localized atomic orbital based quantum transport calculations. Numerical examples are
presented to illustrate the efficiency of the method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investigation of electronic transport properties of
nanoscale materials is at the center of experimental and
theoretical research. Quantum transport calculations [1–14]
are developing at a very fast pace. Most quantum transport
calculations are based on the nonequilibrium Green’s function
(NEGF) formalism with density functional theory (DFT)
Hamiltonians, and most implementations of these calculations
use localized atomic orbitals as basis sets.

Real space mesh [15–18] approaches are very popular and
powerful basis sets in density functional calculations but their
application in transport calculations is limited [14, 19–21]. In
the following, we refer to these bases as grid bases (as they
are defined on a grid in real or reciprocal space) to distinguish
them from localized atomic orbitals. These grid basis sets
provide an alternative to localized atomic orbitals in quantum
transport calculations. The grid basis functions are evenly
distributed in space and not tied to atomic positions. The
real space grid provides a flexible representation of rapidly
oscillating current carrying states. In a recent paper [22] we
have shown that the nonlocalized grid type basis functions
provide accurate results for transport properties. The basis
size in the grid calculations, however, is so large that the
NEGF formalism cannot be easily implemented using grid
basis functions. Grid basis calculations therefore have to
calculate the scattering wavefunction explicitly by using the
transfer-matrix [23], Lippmann–Schwinger, or complex band
structure [24] approaches. Once the scattering wavefunction is

available the transmission probability can be calculated. The
scattering wavefunction based approaches work well but are
generally slower and their implementation is more complicated
than that of the NEGF formalism.

One of the most important advantages of the NEGF
approach is that once the Hamiltonian and overlap matrices
are available in a suitable basis function representation, the
formalism only includes matrix linear algebra in an elegant
and straightforward manner. For ballistic transport, the
transmission as a function of energy is calculated from a trace
expression,

T (E) = Tr(T ), T = GC�LG†
C�R, (1)

where GC is the Green’s function of the device, and �L and
�R are the imaginary parts of the self-energy matrices. This
expression can be evaluated provided that the size of these
matrices is manageable. In the case of a grid calculation, as
noted earlier, this is not the case because the dimension of
the device’s Green’s function can easily be several hundreds
of thousands. The Hamiltonian in grid calculations is sparse
but the Green’s function is a dense matrix, which makes the
calculation prohibitively expensive. Note that to calculate the
transmission, one does not need to calculate all the elements
of the Green’s function, only those matrix elements are needed
which are connected to the �L and �R broadening matrices.
The number of those matrix elements is, however, still too
large to make the formation of the transmission matrix and
calculation of the trace manageable. One can try to calculate
the transmission by evaluating the trace by Monte Carlo
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sampling [25]. The Monte Carlo approach, however, has a
statistical error associated with it and is not very efficient.

In this paper we propose a different approach to evaluate
the trace in equation (1). Instead of calculating the trace
directly from matrix T , T is diagonalized first and the trace
is calculated from the eigenvalues. At first glance this seems
to be more complicated than the direct evaluation but it is
not. The T matrix has only a few nonzero eigenvalues
Ti [26] and instead of diagonalizing T one can diagonalize
T −1 and calculate the eigenvalues 1/Ti . This is the key
advantage of this approach. In the inverse of T , in place of the
dense Green’s function one has the sparse Hamiltonian, and
the diagonalization amounts to roughly the same amount of
computational effort as the diagonalization of the Hamiltonian
in the ground state DFT calculations. Moreover, one only
needs to find the lowest few eigenvalues of T −1 and efficient
iterative diagonalization approaches such as the Lanczos or the
Krylov subspace methods can be used.

In this paper we will restrict ourselves to zero bias
calculations. The self-consistent potential is obtained by
solving the Kohn–Sham equations on a real space grid. The
electron density is calculated from the Kohn–Sham orbitals,
that is the computationally expensive calculation of the density
from the Green’s function on a real space grid, ρ =
− 1
π

Im(GC), is avoided. The presented approach allows
the calculation of the transmission probability directly from
the results of a conventional ground state type real space
calculation using the simple NEGF trace formula without the
extra burden of computing the scattering states. We will
present several numerical examples to illustrate the proposed
approach.

The approach proposed in this work shares the same spirit
as the approach presented in [26]. In [26] the authors have
calculated the transmission eigenchannels of the leads avoiding
the need for the tedious calculation of the scattering states in
the leads. In this work we have presented a method in which
the calculation of the scattering states is bypassed by solving
the eigenvalue problems of the transmission matrix.

The outline of this paper is as follows. In section 2 we
introduce the main points of the formalism. In section 3 we
present numerical examples to show the applicability of the
method. This is followed by a brief summary. Some of the
important details of the approach are presented as appendices.

2. Formalism

2.1. Preliminaries

In the NEGF framework the system is divided into left and right
leads and a device part as shown in figure 1. The leads consist
of periodically repeated layers (boxes). The Hamiltonian is
defined as

HKS = − h̄2

2m
∇2 + VA(r)+ VH[ρ](r)+ Vxc[ρ](r), (2)

where VA is the Coulomb potential of the atomic nuclei, VH

is the Hartree potential, and Vxc is the exchange–correlation
potential.

Figure 1. Organization of the system into left/right leads (L/R) and a
central device (C). The self-consistent potential is calculated for the
central region. Only a few layers of the leads need to be included to
obtain a converged potential for the central region.

Each region is represented by a set of basis functions
{�L

i }NL
i=1, {�C

i }NC
i=1 and {�R

i }NR
i=1. NL, NC and NR are the

numbers of basis functions in the left, center and right regions.
The functions �L

i ,�
C
i and �R

i are centered at the left, center
and right regions, respectively. The dimension of the basis
describing the left and right semi-infinite leads is infinite. To
make the calculations feasible, we add a complex absorbing
potential (CAP) to the left and to the right semi-infinite leads.
These complex potentials transform the open infinite system
into a closed finite system by effectively cutting off the leads
beyond a certain distance. Test calculations presented in [27]
show that the CAP approach gives the same results as the
direct calculation using infinite leads. The details of the CAP
approach are given in appendix A. As a result of the addition of
the CAP in the leads the dimension NL (NR) of the left (right)
basis is finite.

An orthonormal set of basis states is used in the
calculations:

〈�X
i |�Y

j 〉 = δi jδXY , Y = L,C, R, (3)

but one can generalize the formalism to nonorthogonal basis
functions without difficulty. The basis functions will be defined
in the next subsection.

In this basis representation the Hamiltonian matrix of the
left-lead–device–right-lead system, under the assumption that
there is no interaction between the leads, takes the form

H =
⎛
⎝

HL HLC 0

H †
LC HC H †

RC
0 HRC HR

⎞
⎠ ,

where HL, HC, and HR are the Hamiltonian matrices of the
leads and the device. HLC and HRC are the coupling matrices
between the central region and the leads defined as

(HXY )i j = 〈�X
i |HKS|�Y

j 〉. (4)

Using this Hamiltonian, the transmission coefficient can be
calculated by the standard NEGF formalism [1]. In the
framework of the NEGF approach, the transmission coefficient
can be calculated using the self-energies of the leads and the
Green’s functions of the center region. These quantities are
defined as follows. The broadening matrices of the leads
(X = L,R) are given by the expression

�X (E) = i(�X (E)−�
†
X (E)), (5)

where
�X (E) = H †

XC gX (E)HXC (6)
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and
gX (E) = ((E + iε+)IX − HX)

−1 (7)

is the Green’s function of the semi-infinite leads. IX is the unit
matrix in the X = L,R region and ε+ is an infinitesimally
small positive number. The Green’s function of the central
region is

GC(E) = ((E + iε+)IC − HC − �L(E)−�R(E))
−1, (8)

where IC is the unit matrix in the central region. The
transmission probability is given by [1]

T (E) = Tr(T ) T = GC(E)�L(E)GC(E)
†�R(E). (9)

In this equation the transmission coefficient, T (E), is
expressed through the Green’s function of the device and the
semi-infinite leads. The Green’s functions of the semi-infinite
leads, gX , can be calculated by the decimation technique [28],
but in this work we use a different approach by adding complex
absorbing potentials to the lead Hamiltonian (see appendix A).

To calculate T one needs to have the Green’s function of
the central region, GC(E), and broadening matrices, �X (E).
Both of these are NC×NC matrices, where NC is the dimension
of the basis (the number of grid points) in the central region.
As is shown in appendix A, the broadening matrices are sparse
matrices with only a small nonzero block matrix. Using this
simplification, the trace formula can be written as

T (E) =
mL∑
j=1

mL∑
k=1

NC∑
l=NC−mR+1

NC∑
m=NC−mR+1

(GC(E))mj

× (�L(E)) jk(GC(E)
†)kl (�R(E))lm , (10)

where mL and mR are the dimensions of the nonzero block
matrices of �L and �R (see appendix A.). Although the
number of matrix elements to be calculated has been reduced
by exploiting the sparsity of the broadening matrices, the direct
evaluation of the sum is still prohibitively expensive as we
will show in the numerical examples section. To avoid the
calculation of GC(E) which is a dense matrix we calculate
T (E)−1 which only contains sparse matrices as we will show
in section 2.3.

2.2. Basis functions

In this subsection we describe the basis functions of the
calculations. A real space mesh using Lagrange functions [18]
will be used to represent the Hamiltonian. The basis
functions are tensorial products of one-dimensional Lagrange
functions [18]:

�i (x, y, z) = �αβγ (x, y, z) = Lα(x)Lβ(y)Lγ (z). (11)

These basis functions are defined on a three-dimensional mesh
in the computational cell [ax, bx] × [ay, by] × [az, bz]. The
mesh points are

ri = (xα, yβ, zγ ) (12)

where α = 1, . . ., Nx , β = 1, . . ., Ny , γ = 1, . . ., Nz and
Nx , Ny and Nz are the numbers of mesh points in the x , y and

z directions. The basis function �αβγ is only nonzero on the
i = (αβγ ) grid point and zero on all other grid points.

In the [ax, bx ] interval in the x direction, the basis function
is

Lα(x) = 2

Nx + 1

Nx∑
k=1

sin

(
kπ

x − ax

bx − ax

)
sin

(
kπ

xα − ax

bx − ax

)
,

(13)
with equally spaced grid points

xα = ax + bx − ax

Nx + 1
α α = 1, . . . , Nx . (14)

This basis function is zero at the boundaries Lα(ax) =
Lα(bx) = 0.

The Lagrange functions are orthogonal
∫ bx

ax

Lα(x)Lα′(x) = λαδαα′ , (15)

form a complete set of states and the results of the calculations
converge exponentially with respect to the number of grid
points [29]. They have the property

Lα(xν) = δαν, (16)

that is each basis function is nonzero only at one grid point.
In the perpendicular y and z directions we use a periodic

Lagrange basis

Lβ(y) = 1

N

Ny∑
k=1

cos[π(2k − N − 1)(y − yβ)] (17)

where

yβ = ay + by

2
+ by − ay

Ny
β β = 1, . . . , Ny (18)

are equidistant grid points. This basis function is periodic,
Lβ(ay) = Lβ(by). The basis functions in the z directions are
defined analogously to Lβ(y). The most important property
of these basis functions is that, similar to the finite difference
approach, the potential energy matrix is diagonal. The nonlocal
pseudopotential matrix elements are short ranged and connect
only a few neighboring grid points. The kinetic energy matrix
elements are truncated if the distance between two grid points
is larger than a preset value. These matrix elements can
be neglected without losing accuracy [18]. The Hamiltonian
matrix is, therefore, block tridiagonal in this representation.

The computational cell in the x direction is divided into
regions. The center region starts at cL and ends at cR. The left
region contains the grid points ax � xα < cL and the basis
functions in that region are labeled as

�L(x, y, z) = �αβγ (x, y, z) ax � xα < cL. (19)

�C
i and �R

i are defined similarly. In the center one has

�C(x, y, z) = �αβγ (x, y, z) cL � xα � cR (20)

and in the right region the basis functions are labeled as

�R(x, y, z) = �αβγ (x, y, z) cR < xα � bx . (21)
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The matrix elements of the Hamiltonian, defined in section 2.1,
are calculated using these basis functions. The approach is
not limited to these basis functions; other localized functions,
for example a finite difference grid or finite elements, could
also be used. Note that we will use a complex absorbing
potential in the leads which effectively cuts off the leads at
finite distances. Therefore the fact that the basis functions are
zero at the boundaries (at ax and bx ) in the x-direction does not
affect the calculation.

2.3. Formulating an eigenvalue problem

By defining

t (E) = �L(E)
1/2GC(E)�R(E)

1/2 (22)

and using the cyclic property of the trace, T (E) can be
written [30] in the Landauer form

T (E) = Tr(t (E)t†(E)). (23)

The existence of the real matrix �1/2
X is guaranteed because

�X is a positive definite matrix [30]. The matrix t (E)t†(E)
is a Hermitian matrix having real eigenvalues Ti bounded by
0 � Ti � 1. Although the dimension of t (E)t†(E) is
arbitrarily large depending on the basis representation of the
device region, the number of nonzero eigenvalues is limited
to the actual number of conducting channels given by M =
min(ML(E),MR(E)) [31, 32] (where ML(E) is the number
of incoming channels in the left and MR(E) is the number of
outgoing channels in the right at energy E). The calculation
of the transmission probability amounts to determining the
nonzero eigenvalues of T .

Matrix T contains the Green’s functions which are dense
matrices even if the Hamiltonian itself is sparse. Therefore the
direct calculation of the eigenvalues is not practical. One can
determine the eigenvalues of T −1 instead. The inverse matrix
is defined as

T −1 = �R(E)
−1GC(E)

†−1�L(E)
−1GC(E)

−1

= �R(E)
−1[(E − iε+ − HC −�L(E)

† −�R(E)
†)]

× �L(E)
−1[E + iε+ − HC −�L(E)−�R(E)]. (24)

In this equation,

E + iε+ − H −�L(E)−�R(E) (25)

is sparse (except for the small corner matrices �L(E) and
�R(E) as is discussed in appendix B). The eigenvalues of
T −1 are 1

Ti
. The M nonzero eigenvalues of T become the M

lowest eigenvalues of T −1, while all other eigenvalues become
infinite. Iterative diagonalization approaches, particularly the
Lanczos method, are very suitable for calculating the desired
lowest eigenvalues. The application of the Lanczos method in
the present case is described in appendix B.

To make these calculations feasible one has to avoid the
infinite-dimensional matrices of the semi-infinite leads. This
can be achieved by adding a complex absorbing potential
(CAP) into the leads [27]. The CAP transforms the infinite lead
into a finite system and the sparse matrix algebra described

Figure 2. Transmission probability for a one-dimensional
rectangular potential barrier. The solid line is the analytical solution
and the squares are obtained by solving the eigenvalue problem. The
barrier height is V0 = 5, the barrier width is a = 2 and h̄2/m = 1.

above can now be implemented easily. As is shown in [27],
the self-energy matrices calculated by direct evaluation in the
infinite system and by using the CAP approach are the same.
The implementation of the CAP in the present calculation is
described in appendix A.

3. Numerical results

As a first test example we calculate the transmission probability
as a function of energy for scattering on a rectangular potential
barrier in one dimension. The result of the eigenvalue
calculation is compared to the analytical solution in figure 2.
The agreement is perfect showing that the method works very
well. As this is a one-dimensional problem, there is only one
incoming and outgoing wave for each energy so matrix T has
only one nonzero eigenvalue.

The second example is the calculation of the transmission
coefficient of a linear monoatomic chain of gold atoms
placed at a distance of 2.9 Å from each other. A unit cell
containing three gold atoms was used in the calculations. The
transmission in this monoatomic wire is equal to n × G0 where
n is the number of open channels and G0 = 2e2/h is the unit
of the quantum conductance. Figure 3 shows the quantized
transmission as a function of energy. Each channel has unit
conductance, that is the nonzero eigenvalues are Ti = 1. For
this system, the number of eigenvalues times G0 is equal to
the transmission probability T (E). Figure 3 also shows the
density of states and the band structure of the monoatomic
gold wire. One can see clear correlation between the electronic
structure and the transmission coefficient. The lowest band
starts somewhat below −3.1 eV and the transmission in zero
below that threshold. Once a Bloch state becomes available
the transmission is equal to one. As the energy increases, at
around E = −2.2 eV there is a small spike in the transmission
coinciding with the position of the edge of the Brillouin zone.
Increasing the energy further at around E = −1.5 eV a second
transmission channel opens up (two Bloch states become
accessible) and a sharp increase appears in the density of states.
Next, at the edge of the Brillouin zone at E = −1.2 eV and
k = 0 there is a sharp drop in the transmission with a noticeable
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Figure 3. Density of states in arbitrary units (top), band structure
(middle) and transmission probability (bottom) of a monoatomic
gold chain. The wave number k is in units of π/L in the band
structure plot (L is the lattice constant of the unit cell).

spike in the density of states. The rest of the results presented
in figure 3 follow a similar tendency. The transmission, density
of state and the band structure are clearly related.

As a next test we add a CO molecule to the middle atom
of the chain. The coordinates of the C and O atoms are the
same as in [33, 22]. The CO adsorbate completely changes
the transmission probability. This system has been studied
earlier by several groups [34, 33, 22] and serves as a benchmark
for transport calculations. Our results, presented in figure 4,
agree very well with the results of [33]. Due to the scattering
on the perturbation potential of the CO adsorbate the nonzero
transmission eigenvalues are not equal to one anymore, but the
number of nonzero eigenvalues (the number of open channels
in the leads for a given energy) remains the same.

Figure 4. Transmission probability (lower thick line) for a CO
molecule adsorbed onto a gold chain. The transmission of an
unperturbed monoatomic wire (higher thin line) is shown for
comparison.

Figure 5. Density of states in arbitrary units (top) and transmission
probability (bottom) for a bulk gold electrode.

To test the method on a larger system we have calculated
the transmission probability in perfect gold electrodes. The
lattice parameter of the bulk gold used in the calculation is
4.18 Å. The calculated density of states and transmission
probability is shown in figure 5. The changes in the density
of states and the steps and spikes in the transmission are in
correlation, similarly to the case of the monoatomic gold wire
in figure 3.

As a next example we separate the system into left and
right leads and place a three atom gold chain between the
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Figure 6. Monoatomic gold wire between gold electrodes.

Figure 7. Transmission probability (lower thick line) for a
monoatomic gold constriction placed between gold electrodes. The
transmission of the gold electrode (higher thin line) is shown for
comparison.

leads as shown in figure 6. The distance between the gold
atoms is 2.9 Å and the distance between the gold atoms and
the lead is also 2.9 Å. Figure 7 compares the transmission in
the lead–wire–lead system to the transmission in the perfect
lead obtained in the previous example, see figure 5. The figure
shows that the number of nonzero eigenvalues (which is equal
to the transmission in the perfect lead) remains the same but the
eigenvalues are not equal to one anymore. The transmission
probability changes dramatically due to electron scattering on
the gold chain constriction. Placing a molecule or any other
system between the gold electrodes would give similar results.
The calculated transmission would obviously change but the
number of nonzero eigenvalues to be calculated would remain
the same.

Table 1 shows the number of nonzero eigenvalues for the
systems studied. The table illustrates that while the basis
dimension is large, the number of eigenvalues to be calculated
is small making this approach an efficient alternative to the
conventional trace calculation.

Table 1 also shows the dimension of the nonzero block
matrix of the broadening matrices. In the case of the 1d square
well potential mL corresponds to the range of the kinetic energy
(beyond that range the kinetic energy matrix is zero). In the
three-dimensional test cases mL = m × Ny × Nz , where m is
determined by the range of the pseudopotential (mR = mL for
identical leads). The direct evaluation of the trace using (9)
would require the calculation of mL × mL elements of GC

which is clearly prohibitively expensive.

4. Summary

Real space mesh calculations are very popular and powerful.
The application of these approaches to transport calculations
in the simple and elegant Green’s function framework,

Table 1. Maximum number of nonzero eigenvalues M in the
[EF − 4 eV, EF + 4 eV] energy range (EF is the Fermi energy). NC

is the number of grid points in the central region, mL is the number of
nonzero elements of the broadening matrices.

System M NC mL

1d square well 1 50 4
Gold wire 5 280 908 18 491
Gold lead 23 436 590 14 993

however, is not easy due to the need for the computationally
expensive evaluation of the trace expression of the transmission
probability. In this paper the trace calculation of the
transmission probability is re-cast into an eigenvalue problem
of T (E). Only a few of the eigenvalues of this matrix
are nonzero and these eigenvalues can be calculated very
efficiently with the Lanczos method using sparse matrix
operations. This approach avoids the difficulties associated
with the calculation of the Green’s function needed in the
direct evaluation of the trace allowing the calculation of the
transmission probability using the trace formula in grid type
basis calculations. This makes the grid calculations simpler
because the scattering wavefunction does not need to be
explicitly calculated to determine the transmission probability.

The numerical test examples presented in this paper
illustrate the efficiency of the method.
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Appendix A. Transport calculation with complex
absorbing potentials

In the conventional NEGF approach using an appropriate basis
representation the Hamiltonian matrix has a block-tridiagonal
structure

H =
⎛
⎝

HL HLC 0

H †
LC HC H †

RC

0 HRC HR

⎞
⎠ . (26)

In the derivation of this Hamiltonian one has to assume that
the basis functions are suitable short ranged ones and the left
and the right leads are not connected by the basis functions,
that is the right upper and the left bottom corner are zero. The
Hamiltonians of the right and the left leads are

HR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h R
00 h R†

10 0 . . . 0 0

h R
10 h R

00 h R†
10 . . . 0 0

0 h R
10 h R

00 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . hR
00 h R†

10

0 0 0 . . . hR
10 hR

00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)
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HL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hL
00 hL†

10 0 . . . 0 0

hL
10 hL

00 hL†
10 . . . 0 0

0 hL
10 hL

00 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . hL
00 hL†

10

0 0 0 . . . hL
10 hL

00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

where the block-tridiagonal structure is due to the fact
that the lead is made of periodically repeated ‘principal
layers’ and the basis functions only connect the neighboring
layers. In the present work the Lagrange functions are
localized at grid points, the local potential is diagonal in
this representation. The pseudopotential matrix elements are
nonzero only within the radius of the local pseudopotential.
The local pseudopotential is short ranged so only the adjacent
layers are connected with the basis functions. The kinetic
energy is also a sparse matrix which can be truncated so
that only adjacent layers are connected. The Lagrange basis
thus leads to the above block-tridiagonal representation. The
coupling matrices between the leads and the central region are

HLC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

hLC 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

HRC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 hRC

0 . . . 0 0

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

As has been shown above, these matrices are also sparse
matrices with only one block being nonzero.

The matrices of the leads (and thus the coupling matrices
as well) are infinite-dimensional matrices. We use the complex
absorbing potential to truncate these matrices to form a finite-
dimensional representation. In this work we will adopt the
CAP suggested in [35]. This negative, imaginary CAP is
derived from a physically motivated differential equation and
its form is

− iw(x) = −i
h̄2

2m

(
2π

�x

)2

f (y) (31)

where �x = x2 − x1, x1 is the start and x2 is the end of the
absorbing region, c is a numerical constant, m is the electron’s
mass and

f (y) = 4

(c − y)2
− 4

(c − y)2
y = c(x − x1)

�x
. (32)

The CAP goes to infinity at the end of the absorbing region
and effectively cuts off the leads beyond that distance. The left
and right CAPs are wL(x) and wR(x) and their starting points,

xL
1 and xR

1 are deep inside the lead so the complex potential
does not effect the middle region. Both the left and the right
CAPs have the same range which we denote by �x . This
range typically extends over 4–6 principal layers in the lead.
The accuracy of the approach can be increased by increasing
the range of the complex potentials. Denoting the numbers of
layers in the range of the left and right complex potentials as
nL and nR, respectively, one only has to retain nL (nR) blocks
in the Hamiltonian of the lead, that is the HL and HR become
finite-dimensional matrices. If mL (mR) is the dimension of
the block matrices of HL (HR) then the dimension of the
Hamiltonian of the lead is NL = nL × mL (NR = nR × mR).
The dimension of HC is NC.

The matrix representations of the CAPs in the left and
right leads are

WL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wL
nL

0 0 . . . 0 0

0 wL
nL−1 0 . . . 0 0

0 0 wL
nL−2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . wL
2 0

0 0 0 . . . 0 wL
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

WR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wR
1 0 0 . . . 0 0

0 wR
2 0 . . . 0 0

0 0 wR
3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . wR
nR−1 0

0 0 0 . . . 0 wR
nR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

where the block matrices wL
i and wR

i correspond to the
principal layers and thus the block matrices hL

00 and hR
00 of the

Hamiltonian of the lead. In the Lagrange basis representation
the CAP matrices wL

i and wR
i are diagonal. The matrix

elements are equal to the value of the complex potential
evaluated at the corresponding grid points; therefore, the
matrix elements depend on the position and are different in
each principal layer.

The Hamiltonian matrix using the complex potentials
takes the form

H =
⎛
⎝

HL − iWL HLC 0

H †
LC HC H †

RC

0 HRC HR − iWR

⎞
⎠ , (35)

with finite-dimensional block matrices as has been discussed
above. The Green’s functions of the leads in this case can be
written as

gL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gL
11 gL†

12 . . . . . . . . . gL†
1nL

gL
12 gL

22 gL†
23 . . . . . . gL†

2nL

gL
13 gL

23 gL
33 . . . . . . gL†

3nL

...
...

...
. . .

...
...

...
...

... . . . gL
nL−1nL−1 gL†

nL−1nL

gL
1nL

gL
2nL

gL
3nL

. . . gL
nL−1nL

gL
nLnL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(36)
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and

gR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gR
11 gR†

12 . . . . . . . . . gR†
1nR

gR
12 gR

22 gR†
23 . . . . . . gR†

2nR

gR
13 gR

23 gR
33 . . . . . . gR†

3nR

...
...

...
. . .

...
...

...
...

... . . . gR
nR−1nR−1 gR†

nR−1nR

gR
1nR

gR
2nR

gR
3nR

. . . gR
nR−1nR

gR
nRnR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(37)
Using the leads’ Green’s functions and the special sparse
structure of HLC and HRC the sigma matrices become

�L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h†
LCgL

nLnL
hLC . . . 0 0

0 . . . 0 0

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

�R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0

0 . . . 0 0

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 h†
RCgR

11hRC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (39)

which are both NC × NC matrices with only an mL × mL and
an mR × mR nonzero block matrix.

Appendix B. Application of operators in iterative
diagonalization

The Lanczos algorithm is an iterative method first proposed
by Cornelius Lanczos [36] that is an adaptation of the power
iteration method to find eigenvalues and eigenvectors of a
square matrix (or a linear operator in general) or the singular
value decomposition of a rectangular matrix. It is particularly
useful for finding extreme eigenvalues of very large sparse
matrices. To calculate the eigensolutions of an operator O, the
Lanczos algorithm generates a set of vectors (Lanczos vectors)
by a three step recursion process ( j = 1, . . . ,m):

φ j = Oψ j − β jψ j−1 (40)

α j = 〈φ j |ψ j〉

φ′
j = ψ j − α jψ j

β j+1 =
√

〈φ′
j |φ′

j〉 (41)

ψ j+1 = φ′
j

β j+1

starting with ψ0 = 0, β1 = 0 and ψ1 is a random vector
normalized to unity. After the iteration, the operator in the
Lanczos vector representation take a tridiagonal form:

O =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2 . . . 0

β2 α2 β3 . . . 0

0 β3 α3 . . . 0
...

...
. . . 0

0 0 0 . . . αm

⎞
⎟⎟⎟⎟⎟⎟⎠
. (42)

This tridiagonal matrix can be easily diagonalized and the
lowest eigenvalues converge first. To increase the numerical
stability of the algorithm vectors may be re-orthogonalized
several times during the calculations.

In the Lanczos algorithm one needs to compute the action
of operator O on a trial vector ψ . If the dimensionality of the
basis is large, the direct storage of a matrix representation of
O is not feasible. It is an important feature of the Lanczos
algorithm that one only needs to store vector Oψ in the
calculation. Let us first examine the action of

(E + iε+)IC − HC −�L(E)−�R(E) (43)

on a wavefunction �C. The first term is proportional to
the identity operator, the second is a multiplication with
the Hamiltonian, which is a standard operation in grid type
calculations. The application of the third term on the NC-
dimensional vector �C is

� ′
C = �L(E)�C = H †

LCgL(E)HLC�C. (44)

The effect of the first operator

�L = HLC�C, (45)

where�L is an NL-dimensional vector, can be easily evaluated
because only one small block of HLC is nonzero. Next,

� ′
L = gL(E)�L, (46)

where � ′
L is an NL-dimensional vector, is rewritten as a linear

equation
((E + iε+)IL − H ′

L)�
′
L = �L, (47)

for the unknown � ′
L. � ′

L is then computed by solving
this sparse linear equation using the conjugate gradient
method [37]. The last step is to calculate the NC-dimensional
vector

� ′
C = H †

LC�
′
L, (48)

which is again a simple multiplication because HLC is zero
except for a single block matrix. The calculation on the�R(E)
part is the same using the appropriate Hamiltonians of the right
side.

Now we turn to the evaluation of the action of �−1
L . To do

this we first rewrite �L as

�L = iH †
LC(gL − g†

L)HLC (49)

= iH †
LCgL((g

†
L)

−1 − (gL)
−1)g†

L HLC (50)

= iH †
LCgL(E − H ′

L − E − H ′†
L )g

†
L HLC (51)

= 2H †
LCgLWLg†

L HLC. (52)
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Now the inverse of �L becomes

1
2 H −1

LC g−1†
L W−1

L g−1
L H −1†

LC . (53)

The only problematic part is the calculation of the inverse of
the low rank matrix HLC (to be precise, by H −1

LC we actually
mean the pseudo-inverse of HLC). To calculate the effect of
H −1

LC on an NC-dimensional vector �C, we solve the sparse
linear equation

�C = HLC�L (54)

for the unknown �L. This can be done by a singular value
decomposition,

HLC = U W V T , (55)

where U is a column-orthogonal NL × NC matrix, V is an
orthogonal NC × NC matrix, and W is an NC × NC diagonal
matrix with positive or zero elements wi (singular values) in
the diagonal. Using the singular value decomposition, the
solution of equation (54) is

�L = V diag(1/wi )U
T�C (56)

where 1/wi is replaced by zero for wi = 0 [37]. As only one
block of HLC is nonzero, this singular value decomposition is
computationally inexpensive.

The rest of the operations in equation (53) are simple. The
multiplication with

g−1
L = E IL − H ′

L (57)

is a sparse matrix multiplication. Since WL is diagonal, the
multiplication with W−1

L is simply a multiplication with the
inverse of the diagonal elements.
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