Time-dependent density functional study of field emission from nanotubes composed of C, BN, SiC, Si, and GaN

Joseph A Driscoll¹, Sergiy Bubin¹, William R French² and Kalman Varga¹

¹ Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
² Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA

E-mail: joseph.a.driscoll@vanderbilt.edu

Received 15 March 2011, in final form 3 May 2011
Published 6 June 2011
Online at stacks.iop.org/Nano/22/285702

Abstract

Field emission from various types of nanotubes is studied by propagating the electronic density in real space and time using time-dependent density functional theory. Capped (5, 5) C, BN, SiC, Si, and GaN nanotubes are considered. The GaN, SiC, and Si nanotubes were found to be significantly better field emitters than C and BN nanotubes, both in terms of current magnitude and sharpness of peaks in the energy spectra. By analyzing the electronic structure of the various systems it is seen that the nanotubes with the highest currents have electron densities that extend significantly from the nanotube in the emission direction.

(Some figures in this article are in colour only in the electronic version)
This approximation is avoided in the time-dependent approach: the field-emitted electrons and the charge redistribution in the nanotubes are described on an equal footing. The asymptotic form of the wavefunction is not needed in the calculation, and the time evolution of the wavefunction is used to describe the emitted current.

In the TDDFT framework [17] the electronic motion is described by the following time-dependent Kohn–Sham equation for single particle orbitals Ψ_i:

$$ \frac{i}{\hbar} \frac{\partial}{\partial t} \Psi_i(\mathbf{r}, t) = H \Psi_i(\mathbf{r}, t) $$

with

$$ H = H_{KS} + V_{\text{ext}} $$

$$ H_{KS} = -\frac{\hbar^2}{2m} \nabla^2 + V_A(\mathbf{r}, t) + V_H(\rho)(\mathbf{r}, t) + V_{XC}(\rho)(\mathbf{r}, t), $$

where $V_{\text{ext}}(\mathbf{r}, t)$ is the time-dependent external potential, $V_A(\mathbf{r}, t)$ is the atomic potential, $V_H(\rho)(\mathbf{r}, t)$ is the Hartree potential, and $V_{XC}(\rho)(\mathbf{r}, t)$ is the exchange–correlation potential. To represent $V_A(\mathbf{r}, t)$ we used pseudopotentials [25]. The exchange–correlation potential $V_{XC}(\rho)(\mathbf{r}, t)$ is constructed using the adiabatic local density approximation [26] and the Hartree potential is calculated by solving the Poisson equation. The electron charge density is given by $\rho(\mathbf{r}, t) = \sum_i |\Psi_i(\mathbf{r}, t)|^2$ and the current is defined as

$$ j(\mathbf{r}, t) = \frac{e\hbar}{2im} \sum_i (\Psi_i^\dagger \nabla_r \Psi_i - \Psi_i \nabla_r \Psi_i^\dagger). $$

One difficulty in time-dependent calculations arises from the finite size of the simulation volume. Typically, long simulation times are needed for the system to reach a steady state in which measurements can be made. In a finite simulation volume, however, long simulations allow the electron density to reach the end of the volume and produce non-physical reflections. To avoid artificial reflections from the boundaries during the time evolution we used complex absorbing potentials (CAPs) near the boundaries. The CAP absorbs the outgoing waves and so prevents reflections from the boundaries. Figure 1 shows the arrangement of the system. The CAP is zero near the nanotube, and so does not impact calculations of the current. In this work we used the form of a CAP taken from Manolopoulos [27]. It gradually increases to infinity at the right end of the simulation volume.

The time-dependent Kohn–Sham equation (1) is solved by time propagating the Kohn–Sham orbitals. The Taylor propagator [28] is used for the time development of the wavefunction:

$$ \Psi_k(\mathbf{r}, t + \Delta t) = \sum_{j=0}^{N_T} \frac{(\Delta t)^j}{j!} H^j \Psi_k(\mathbf{r}, t), $$

where the order of the Taylor expansion is taken to be $N_T = 4$. The system’s ground state is used for the initial state $\Psi_k(\mathbf{r}, t = 0)$. The time-dependent Hamiltonian is the sum of the Kohn–Sham Hamiltonian H_{KS}, the Hamiltonian of the interaction with the electric field $V_F = -eE_x$, and the left/right absorbing potentials W_L and W_R, giving $H = H_{KS}(t) + V_F + W_L + W_R$. The time-dependent density functional calculations presented here are implemented using our Lagrange function [29] based on real-space, real-time code. Our use of a real-space grid basis allows representation of all types of electron orbitals including s, p, d, etc states.

It is important to note that the calculations presented here incorporate the effects of space charge [30, 31] and the Boersch effect [32] (broadening of the electron beam’s energy spread due to the interaction between electrons within the emitted beam). This is because for each time step we calculate the electron density, and solve the Poisson equation to get the resulting potential. As a result, any space charge or Boersch effects will be included, and no ad hoc modeling is required.

It is known [33–36] that nanotubes can assume different geometries. In order to see the differences in field emission properties caused by changes in composition, we kept other aspects of the nanotubes the same. They all had (5, 5) chirality, end caps made from half-C60 molecules, and a total of 120 atoms per nanotube.

To generate realistic coordinates for the various nanotubes, we performed classical molecular dynamics (MD) simulations using the Tersoff potential [37]. Parameters were taken from [38, 39] for C, [40] for Si and SiC, and [41, 42] for BN. Reference [43] was used for the GaN structure. The Tersoff potential is an empirical interatomic potential that has been widely used to study the properties of semiconducting materials [37, 38, 40]. Through the incorporation of information about bond order in an atom’s local environment, the Tersoff potential describes electronic structure effects (e.g. sp3 bonding) more explicitly than conventional pairwise potentials. Its accuracy has been demonstrated through numerous forms of property prediction, ranging from lattice and elastic constants for crystalline structures [38, 40] to cohesive energies [44] and mechanical behavior [45–47] for nanotubes.

In carrying out the MD simulations, we utilized the LAMMPS [48] open source package with a time step of 2.0 fs and the equations of motion were integrated via the standard velocity Verlet algorithm. The simulations were performed in the canonical (constant NVT) ensemble with the Nosé–Hoover thermostat applied. To produce the final relaxed coordinates, the following annealing procedure was used: (i) run MD for 100 ps at 298 K, (ii) run MD for 100 ps while ramping the temperature down from 298 to 0 K, (iii) run MD for 50 ps at 0 K.

After the geometry of the nanotubes was optimized, the ground state orbitals $\Psi_k(\mathbf{r}, t = 0)$ were calculated by solving...
Figure 2. Current versus time for nanotubes of varying composition at a field strength of 1.00 V Å⁻¹.

Table 1. Peak field emission currents (in μA) for (5, 5) capped nanotubes with differing composition in varying electric fields.

<table>
<thead>
<tr>
<th></th>
<th>0.10 V Å⁻¹</th>
<th>0.50 V Å⁻¹</th>
<th>1.00 V Å⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.024</td>
<td>1.297</td>
<td>29.384</td>
</tr>
<tr>
<td>BN</td>
<td>0.029</td>
<td>2.561</td>
<td>32.916</td>
</tr>
<tr>
<td>GaN</td>
<td>0.076</td>
<td>7.844</td>
<td>132.279</td>
</tr>
<tr>
<td>SiC</td>
<td>0.085</td>
<td>9.259</td>
<td>167.105</td>
</tr>
<tr>
<td>Si</td>
<td>0.162</td>
<td>28.292</td>
<td>347.537</td>
</tr>
</tbody>
</table>

Due to the high computational cost of the calculations, the size of the nanotubes is limited to 120 atoms. Once the electric field is turned on and the field emission starts, the nanotubes become charged due to the loss of electrons. This limits the length of the simulation time; once the electron deficiency of the nanotube becomes too large the field emission decreases (see figure 2). It should also be noted that increasing the number of atoms in a nanotube results in a somewhat increased current. Apparently, very long nanotubes are necessary in order to obtain completely converged values for the current magnitude, but this is computationally impractical. The aim of the present simulations, however, is to study how the composition of the nanotubes affects their field emission properties. Since we keep the same number of atoms (and electrons) in all of our structures, it allows us to make a meaningful comparison.

The calculated currents for different electric fields are shown in table 1. The electric fields used in these calculations span the typical range of fields used in field emission experiments. The GaN, SiC, and Si nanotubes have much larger currents than the other nanotubes. BN and C nanotubes have similar current values, with BN being slightly higher.

Figure 3 shows the profile of the local part of the potential in the direction of the electric field (x-axis) for different electric field magnitudes (by profile we mean the local potential integrated in the yz plane; i.e. it is a projection onto the x-axis). For higher electric fields the potential barrier lowers and gets narrower allowing higher electron currents. In the present calculations the core electrons are replaced by pseudopotentials which consist of both local and nonlocal parts. The use of nonlocal pseudopotentials makes the qualitative analysis of the potential profiles difficult. We cannot directly compare the potential distribution of nanotubes to study the reasons behind the differences in field emission currents because for different elements the contributions from the local and nonlocal parts differ.

In figure 4 the potential profile is plotted for the various nanotubes in the case of 1.00 V Å⁻¹ field strength. It should be emphasized once again that this is an approximate picture, which lacks the contribution from the nonlocal part of the potential and does not show the full 3D structure of the total potential. Nonetheless, it serves as a good illustration of the basic mechanism that controls the field emission properties of various structures. As can be seen in figure 4 the potential barrier height and width for a given nanotube correlates quite well with the actual current intensity.
Figure 5. Density profile for the different nanotubes at the field strength of 1.00 V Å⁻¹.

Figure 6. Current versus energy, relative to Fermi energy at a field strength of 1.00 V Å⁻¹. The spectral peaks were broadened with Gaussians, using a full width at half maximum of 0.2 eV.

The density profile for the various nanotubes is shown in figure 5. This shows that for some of the nanotubes, the electron density extends further from the tube. From table 1 we see that this correlates with higher currents.

Figure 6 shows the current versus energy distribution for the different nanotubes. The most intriguing feature of this figure is that the current is not emitted from one high lying orbital but instead originates from several states below the Fermi energy.

In summary, the field emissions from nanotubes of various composition have been studied using time-dependent density functional theory. The calculations predict that the GaN, SiC, and Si nanotubes are particularly good field emitters. The highest-current nanotube, Si, is predicted to produce a current an order of magnitude higher than BN or C nanotubes.

Acknowledgment

This work has been supported by NSF Grant CMMI0927345.

References

[39] Lindsay L. and Brodio D A 2010 Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene Phys. Rev. B 81 205441

[43] Benkabou F, Certier M and Aourag H 2003 Elastic properties of zinc-blende g a n, a l n and i n n from molecular dynamics Mol. Simulation 29 201–9

