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ABSTRACT: In this work, we report benchmark variational calculations for
the boron monohydride (BH) molecule and its cation (BH+). The solutions
to the nonrelativistic Schrödinger equations for these systems are obtained
using a variational method without assuming the Born−Oppenheimer (BO)
approximation, which separates electronic and nuclear motions. The ground-
state wave functions for both the eight-particle (two nuclei and six electrons)
BH molecule and the seven-particle (two nuclei and five electrons) BH+ ion
are expanded in terms of all-particle explicitly correlated Gaussian with
prefactors that effectively capture nucleus−nucleus correlation effects. These
nonrelativistic non-BO wave functions are used to compute leading-order
relativistic corrections to the total energies via perturbation theory, as well as
to estimate leading-order quantum electrodynamics (QED) effects. The
resulting total, dissociation, and ionization energies of BH represent the most accurate rigorously obtained theoretical values to date.

■ INTRODUCTION
Routine first principle quantum-mechanical calculations of
molecular systems are typically performed under the Born−
Oppenheimer (BO) approximation, which assumes a decou-
pling of nuclear and electronic motions. Consequently, to
determine specific molecular properties, such as geometric
structure or spectra, a series of calculations is required for
various representative arrangements of the clamped nuclei.
These calculations are then used to derive the rovibrational
spectrum of the molecule or predict the dynamics of possible
chemical reactions the molecule can be involved in. The BO
approximation is a bedrock of the present day quantum
chemistry. However, in certain cases, decoupling nuclear and
electronic motions can introduce hard-to-control inaccuracies
or even cause the Born−Oppenheimer approximation to fail
entirely. Notable examples include reaction dynamics at the
dissociation threshold or interactions with ultrashort laser
pulses.

High-precision non-Born−Oppenheimer (non-BO) calcula-
tions reported in the literature have been largely limited to the
hydrogen molecular ion, hydrogen molecule and its isotopo-
logues. For these one- or two-electron systems it has become
possible to calculate the binding energy to an absolutely
remarkable precision and achieve excellent agreement with high-
resolution spectroscopic measurements.1−12

In our works, we have developed ab initio approaches for
calculating molecular ground and excited states without
assuming the BO approximation, extending these methods to

atomic and molecular systems with more than two elec-
trons.13−25 In these calculations we employ the standard
Rayleigh-Ritz variational method. To describe the coupled
nuclear−electronic motion we have used all-particle explicitly
correlated Gaussian functions (ECGs) that exponentially
depend on the squares of the distances between every pair of
particles present in the system to expand the system’s wave
function. Each Gaussian also depends on a set of exponential
parameters that are fully optimized in the calculation. The
optimization is aided by analytically calculated energy gradient
determined with respect to the parameters. This optimization
and large number of Gaussian reaching several thousand are key
in obtaining results with very high accuracy.

In the non-BO variational calculations we use a Hamiltonian,
which is obtained from the laboratory-frame nonrelativistic
Hamiltonian by rigorously separating out the center-of-mass
motion. The Hamiltonian represents the internal motion of the
particles forming the system and it is isotropic. This internal
motion occurs in the field of the central potential generated by

Received: November 8, 2024
Revised: January 19, 2025
Accepted: January 23, 2025
Published: February 3, 2025

Articlepubs.acs.org/JPCA

© 2025 American Chemical Society
1623

https://doi.org/10.1021/acs.jpca.4c07582
J. Phys. Chem. A 2025, 129, 1623−1633

D
ow

nl
oa

de
d 

vi
a 

T
H

E
 A

U
T

O
N

O
M

O
U

S 
O

R
G

N
 E

D
U

C
 N

A
Z

A
R

B
A

Y
E

V
 U

N
IV

 o
n 

M
ar

ch
 1

3,
 2

02
5 

at
 2

0:
49

:4
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/curated-content?journal=jpcafh&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saeed+Nasiri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergiy+Bubin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ludwik+Adamowicz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.4c07582&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c07582?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c07582?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c07582?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c07582?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpcafh/129/6?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/6?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/6?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/6?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.4c07582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


the charge of nucleus, which is chosen to be the reference
particle (usually the heavies nucleus).

The calculations presented in this work concern two diatomic
systems�the BH molecule and BH+ molecular ion. The total
numbers of particles in the two systems are eight and seven,
respectively. The separation of the center-of-mass motion
reduces the dimensionality of the BH non-BO Hamiltonian
from the original 8 × 3 = 24 to 7 × 3 = 21. Placing the boron
nucleus in the center of the internal coordinate system results in
the internal Hamiltonian that represents the motion of seven
“pseudo-particles” in the central field of the charge of the boron
nucleus. We can call the particles pseudoparticles because, while
they have the charges of the original particles, their masses are
not the original masses, but the reduced masses. Thus,
pseudoparticle 1 is pseudoproton and pseudoparticles 2−7 are
pseudoelectrons (see the next section) and the internal wave
function has to represent one positively charged particles and six
negatively charged particles moving in the central field of a
positive charge of the boron nucleus.

In the electronic structure theory, the electron correlation is
an effect that needs to be very well represented in the wave. In
high-accuracy all-particle non-BO molecular calculations, it is
essential to account not only for the electronic correlation with
high precision but also to accurately describe the electron−
nucleus and nucleus−nucleus correlations effects. The nucleus−
nucleus correlation is significantly stronger than the electron−
electron correlation due to the substantially larger masses of
nuclei compared to the electron mass and due to stronger
columbic repulsion between larger charge of the B nucleus.
Nuclei tend to avoid each other to amuch greater extent than the
lighter electrons in their relative motion within the system. As a
result, the probability of finding two electrons close to each other
in space is much higher than for two nuclei. This, as we discussed
before,13 mandates multiplication of each Gaussian basis
function by a product of powers of all internuclear distances.
Thus, for a diatomic system, such as the BHmolecule, one needs
to multiply each Gaussian by powers of the distance between the
proton and the boron nucleus, which, as the reference particle, is
located in the center of the internal coordinate system (see the
next section). Such multipliers are also helpful for generating
radial nodes in the non-BO wave function that appear when the
system becomes vibrationally excited. The electron−nucleus
correlation is also strong, as the electron, particularly the core
electrons, follow the moving nuclei very closely. However, as an
electron and a nucleus attract, there is no “avoiding” effect in this
case. Thus, the exponential parts of the explicitly correlated
Gaussian are quite sufficient to represent this correlation effect.

The non-BO ECG calculations carried out for the ground
state of the BH molecule in this work, are the largest such
calculations ever attempted for a molecular system. Apart from
generating very accurate benchmark predictions of such
quantities as the BH ionization and dissociation energies, they
also provide a demonstration that the non-BO approach can be
extended to larger molecular systems. With an increased
computational power available and, perhaps, with transitioning
to using quantum computers of the future, it may be taken to
even larger systems. The increasing size of the molecules that
can be calculated with the non-BO ECG approach brings up a
possibility to extend the non-BO calculations to study the
behavior of larger molecules exposed to static and time-
dependent magnetic and electric fields. Some preliminary
work in this direction has been recently carried out26−31 and
the results obtained so far indicate that this field may become a

very fruitful ground for exploring the role the coupling of the
electronic and nuclear motions plays in the phenomena related
to the interaction of light and matter.

Furthermore, numerous accurate computational studies have
been reported for BH and BH+ molecules within the BO
approximation, with BO corrections calculated at varying levels
of accuracy. However, for bothmolecules, accurate experimental
measurements are currently unavailable, making it challenging
to assess the reliability of the computed results. It is important to
note that none of the previously reported theoretical studies
employed a variational approach (see the Results Section),
introducing an additional layer of complexity in evaluating their
accuracy. In this work, an effort has been made to perform the
most precise variational non-BO calculations possible to date.
The results of such calculations can serve as a reference for
deriving and benchmarking other very accurate postBO
calculations.

■ FORMALISM
The approach used in this work to calculate the ground states of
diatomic molecules is described in refs 21, 23, and 24. The
following nonrelativistic internal Hamiltonian (in atomic units)
is used in the present calculations
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where n = N − 1, N is the total number of particles in the
molecule (e.g., the sum of the number of the nuclei and the
number of electrons;N = 8 for BH andN = 7 for BH+),m0 is the
mass of the reference nucleus (11B,m0 = 20 063.737 52me

32) and
q0 = +6 is its charge, qi, i = 1, ..., n, are the charges of the other
particles, μi = m0mi/(m0 + mi) is the reduced mass of particle i
(mi, i = 1, ..., n, are the particle masses), ri, i = 1, ..., n is the
distance from particle n + 1 to the reference particle, i.e., particle
1, and rij is the distance between particle j + 1 and particle i + 1.
The prime symbol in eq 1 denotes the matrix/vector
transposition. As mentioned in the introduction, the internal
Hamiltonian describes n pseudoparticles, which retain their
original charges of the actual particles but have their masses
replaced by their respective reduced masses, moving in the
central field generated by the charge of a reference nucleus. The
internal Hamiltonian is rotationally invariant about the origin of
the internal coordinate system, resembling an “atom-like”
Hamiltonian. Consequently, the eigenfunctions of this Hamil-
tonian can be classified using atomic symmetry principles. These
eigenfunctions, along with their corresponding eigenvalues
(energies), encapsulate all modes of the internal molecular
motion, including the electronic, vibrational, and rotational
modes. In particular, the ground state wave function is
spherically symmetric and invariant under 3D rotations.

In order to obtain accurate eigenvalues and wave functions
corresponding to rotationless states of Hamiltonian (1), the
wave functions are expanded in terms of spherically symmetric
all-electron explicitly correlated Gaussian (ECG) basis
functions, which have the following form13

= [ ]r rr A Iexp ( )k
m

k1
k (2)
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where r1 is the distance between the nuclei,mk is an even integer
(in this work, mk is constrained within the range 0−200 and it is
regarded as an integer variational parameter), and Ak is an n × n
real symmetric matrix of the exponential variational parameters.
Note that both Ak andmk are unique and independently tunable
for each basis function, which is indicated by index k. Vector r in
eq 2 is a 3n-component vector formed by stacking the internal
Cartesian coordinates, ri
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Let us denote Ak = Ak ⊗ I. Matrix Ak and, by extension, Ak, have
to be positive definite in order for Gaussian basis function (2) to
be square integrable. To ensure positive definiteness of Ak we
adopt the following Cholesky-factored form for it:Ak = (LkLk′)⊗
I, where Lk is a n × n lower-triangular matrix of real numbers. In
this representation, Ak is automatically positive definite for any
real-valued Lk. The elements of matrix Lk are variational
parameters that are thoroughly optimized in the present
calculations. The optimization employs the analytical energy
gradient determined with respect to the Lk matrix elements.

ECG basis functions have also been employed in expanding
the wave functions of the ground states of B (2 2P) and B+ (2 2S)
species. Specifically, the following S-type and P-type Gaussian
basis functions have been used, respectively33,34

= [ ]r rA Iexp ( )k k (4)

= [ ]r rz A Iexp ( )k i kk (5)

Here zi dk
is the z-coordinate of the ik-th electron. Subscript ik (the

label of the electron in a p state) can vary in the range 1-n and can
be considered to be an adjustable integer variational parameter.
The parameter is specific for each basis function ϕk. Its optimal
value is determined variationally when the ECG is first added to
the basis set.

All calculations were performed using our in-house parallel
computer codes, written in Fortran and utilizing MPI (Message
Passing Interface) for communication between parallel
processes. It is worth noting that the generation of the basis
set for each state�whether for atoms or molecules�is by far
the most time-consuming step in these calculations and scales
steeply with system size. Among all systems studied here, the
eight-particle BH molecule posed the greatest computational
challenge, requiring over two years of continuous computing on
dozens of CPU cores in a parallel computer system. The largest
basis set generated for BH, comprising 5000 ECGs, represents
the practical limit of our current computational capacity.

As mentioned in the introduction, the inclusion of rm
1

k factors
in Gaussian basis functions (2) for diatomics can be understood
by examining the internal Hamiltonian. Specifically, within the
framework of nr, pseudoparticle 1 represents the proton. As a
result, a significant Coulomb repulsion exists between the
proton’s charge and the charge of the boron nucleus located at
the origin of the internal coordinate system. The pair correlation
function between these two nuclei, which depends on the
internuclear distance r1, must approach zero rapidly as r1
approaches zero to satisfy physical constraints. Conversely, for
a diatomic molecule in its ground state, this pair correlation

function reaches a pronounced peak around r1 ≈ re, where re is
the molecule’s equilibrium bond length.

The current study focuses on the ground states of the BH and
BH+ molecules, as well as the boron atom and its singly charged
ion. In constructing the wave functions for each species, we
ensure that an appropriate permutational symmetry is enforced.
In our approach we adopt the spin-free formalism, as detailed by
e.g. Matsen, Pauncz, and Hamermesh.35−37 A central aspect of
this formalism is the construction of a suitable permutational
symmetry projector, (the Young operator), which is applied
to each basis function. Equivalent terms can also be obtained by
pairing spatial basis functions with corresponding spin
components and summing over electronic spin coordinates.
The Young operator can be presented as a product = ,
where and are a symmetrizer over all rows and
antisymmetrizer over all columns, respectively, of an appropriate
Young tableau. For the ground singlet state of BH molecule,
where particles 1 is the B nucleus, particle 2 is the H nucleus
(proton), and particles 3−8 are the electrons, the Young
operator can be chosen in the following form

=BH
34 56 78 357 468 (6)

where

= + = + = +1 , 1 , 134 34 56 56 78 78

= (1 )(1 )357 35 37 57

= (1 )(1 )468 46 48 68

and ij is a transposition operator that permutes the spatial
coordinates of the i-th and j-th particle. For the ground doublet
state of BH+, where, again, particles 1 and 2 are nuclei, and 3−7
are electrons, the Young operator takes the form

=
+BH

34 56 357 46 (7)

with

= 146 46

In a similar way one can pick appropriate symmetry projectors
for the atomic species, B and B+, in which particle 1 is the B
nucleus, and particles 2−6 or 2−5 are electrons, respectively

=B
23 45 246 35 (8)

=
+B

23 45 24 35 (9)

where

= + = +1 , 123 23 45 45

and

= (1 )(1 ),246 24 26 46

= =1 , 124 24 35 35

Note that B corresponds to a doublet electronic state, while
+B to a singlet state.
The first step in the present calculations is to determine the

nonrelativistic, non-BO energies and the corresponding non-
relativistic wave functions. Although these calculations are
highly precise and well-converged, they are insufficient for
accurate determination of the total, ionization, and dissociation
energies when compared to state-of-the-art spectroscopic
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measurements. To achieve a closer agreement with experimental
data, it is essential to include relativistic and quantum
electrodynamics (QED) corrections in the calculations. This is
done by expanding the total energy of the system as a series in
powers of the fine-structure constant, α38,39

= + + +E E E E ...tot nr
2

rel
(2) 3

QED
(3)

(10)

where Enr is the nonrelativistic energy of the considered state of
the system, the second term, α2Erel

(2), represents the leading-order
relativistic correction, the third term α3EQED

(3) represents the
leading-order QED correction, and so on. Each of these terms is
evaluated as an expectation value of a certain effective
Hamiltonian. In our calculations, quantity Erel

(2) in eq 10 is the
expectation value of the Breit−Pauli Hamiltonian, rel,
corresponding to the ground state of BH, BH+, B, and B+.40,41

In the present work, rel, before it is used in the calculations, is
expressed in terms of the internal coordinates. The mass−
velocity ( )MV , Darwin ( )D , orbit−orbit interaction ( )OO ,
spin−spin Fermi contact interaction ( )SS , and spin−orbit
interaction ( )SO are included in rel

= + + + +rel MV D OO SS SO (11)

The explicit expressions for the corresponding effective
operators in the internal coordinates are as follows42,43
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=
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>

s s r
q q

m m
8
3

( ) ( )
i j

j i
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i j
i j ijSS

, 2

(15)

where in the last expression, si denotes the spin operator of the i-
th pseudoparticle. For the states of systems considered in this
work

=s s r r( )
3
4

( )r ri j ij ij,

where the subscripts r and σ stand for averaging over the spatial
and spin coordinates, respectively. Note that expressions (12)
and (14) above are general, while (13) and (15) are given
specifically for diatomic molecules, where particles 1 and 2 are
nuclei. In the case of atomic species all summation indices in
them should start with 1 and the second sum in (13) is dropped.

The relativistic corrections for a particular state are calculated
as the expectation values of the above operators using the state’s
nonrelativistic non-BO wave function. At the lowest-order
approximation, the spin−orbit interaction that gives rise to the
fine structure splitting is obtained as a sum of two terms. The
first term is an expectation value of the following operator
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SO1
and SO2

are the one- and two-electron parts of the SO

operator, respectively. They are often referred to as the spin−
orbit and spin−other−orbit interactions, respectively. In the
lowest order, the fine-structure splitting is calculated as the
expectation value of SO using the nonrelativistic wave function
obtained in the variational calculation using the internal
Hamiltonian (1). Similarly to the nonrelativistic Hamiltonian,
the Hamiltonian for calculating the spin−orbit interaction also
depends on the nuclear mass m0.

44 In the limit of an infinite
nuclear mass, the Hamiltonian reduces to a sum of the standard
spin−orbit and spin−other−orbit interaction operators. There-
fore, the recoil corrections to the spin−orbit interaction are
automatically included in the calculations. To obtain the
leading-order energy correction the expectation value of SO
is multiplied by α2. The next-order effect contributing to the fine
structure splitting is due to anomalous magnetic moment
(AMM) of the electron. This term is given by the expectation
value of the following Hamiltonian
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The AMM term is multiplied by 2κα2, where κ =
1.15965218128 × 10−3 is the electron magnetic moment
anomaly.45 The resulting contribution of this effect is propor-
tional to α3. It should be noted that operator AMM is obtained
within the infinite-nuclear-mass (INM) approximation and,
thus, does not contain any recoil corrections. For more details
see our previous works.25,42,43,46

The largest contribution to the leading QED correction
comes from the term containing the Bethe logarithm, ln k0.

47,48

In our previous works,24,25 we discussed the challenges involved
in computing this QED correction. The main difficulty lies in
accurately determining the term involving ln k0. To our
knowledge, despite of proposing some efficient algorithms to
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calculate ln k0 term49,50 for atomic or molecular species, no
direct calculation of ln k0 has been reported for the B, BH, and
BH+ species using ECG basis functions. Recently, Lesiuk and
Lang51 reported a ln k0 value for the B atom obtained using the
mean-field (MF) approximation. Their reported value of 6.339
is significantly larger than the estimate provided by Puchalski et
al.,52 which is 6.195(5). Further comparison of the reported ln k0
values for lithium and beryllium with those obtained using the
ECG/Hy methods reveals a systematic overestimation of the
values in the MF calculations. For lithium, ln k0(Li, Hy) =
5.17817 and ln k0(Li, MF) = 5.194, while for beryllium, ln k0(Be,
ECG) = 5.750 46 and ln k0(Be, MF) = 5.763. It is well
established that the dominant contribution to ln k0 in atoms
originates from the inner-shell electrons. As a result, the value
estimated by Puchalski et al.52 is adopted in the present
calculations. Therefore, the following approximate expression
for the effective leading-order QEDHamiltonian can be adopted
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where ln k0(B) = 6.195(5),52 ln k0(B+) = 6.1944(9),53 and ln
k0(H) = 2.984 12954 are the Bethe-logarithm values, and rB−i and
rH−i stand for the 3D Dirac delta functions that depend on the
nucleus−electron distances.

Expressions (11) and (18) contain singular operators.
These are the squares of the linear momentum squares and

the Dirac delta functions. The expectation values of these
operators are known to exhibit slower convergence with the
basis size in the Rayleigh-Ritz variational method compared to
the case of nonsingular operators (e.g., the nonrelativistic
Hamiltonian). In this work, when evaluating such expectation
values for atomic species B and B+ we adopted a regularization
scheme (commonly referred to as “Drachmanization”55) as
described in refs 56 and 57. However, for the molecular species,
BH and BH+, these expectation values are evaluated directly
because the calculation of needed integrals in the case of basis
functions (2) is too involved.

■ RESULTS
Table 1 presents the calculated total non-BO nonrelativistic
energies, the leading relativistic corrections, and several key
expectation values for the ground states of the BH, BH+, B, B+,
andH species. As previously mentioned, BH is the largest system
studied to date using all-particle ECG basis functions.

In addition to the values computed using varying basis set
sizes, Table 1 also includes energies and other expectation values
extrapolated to the infinite basis set limit. Over the past two
decades, our experience in working with ECG calculations has
shown that extending the basis set by linearly increasing
multiples of a certain number of functions often results in energy
increments that resemble a geometric progression. Conse-
quently, we extrapolate to the infinite basis set limit using a
geometric progression approximation. For more details, please
see our previous publication.70 The extrapolated values are
presented alongside their estimated uncertainties. It can be seen
that different expectation values exhibit different levels of
convergence. For instance, the estimated accuracy of the

computed nonrelativistic energy of BH is approximately half

of a millihartree, whereas the estimated uncertainty for B+ is

around 2.5 nanohartree. Consequently, when evaluating the

ionization or dissociation energy, the primary contribution to

the total error is expected to originate from the larger system�
BH.

Table 2 shows the expectation values of the SO and AMM
Hamiltonians for the spin−orbit term. These values are shown
exclusively for the boron atom (in 22P state) as the spin−orbit
interaction is absent in all other systems. The results exhibit
convergence up to eight decimal places. Recently, we
investigated the fine structure of the 22P states of the boron
atom, achieving the most accurate calculations reported to date
(see ref 71 for further details).

The basis sets used to obtain the results in Tables 1 and 2 were
generated in a process that begins with a small set of Gaussian
functions. The nonlinear parameters of these functions are
selected using a mix of random and physically motivated choices
followed by optimization. The basis set is then systematically
expanded over several steps. In each step, new Gaussian
functions are added and variationally optimized using a
procedure that employs the analytical energy gradient. The
enlargement and subsequent optimization are performed using a
one-function-at-a-time approach. After a newly added function
is optimized, it is checked for linearly dependency (within a
predefined threshold) with the existing functions in the set. If no
linear dependencies are detected, the function is retained in the
basis set. As mentioned previously, both the Lk matrix elements
and themk powers in the r1 pre-exponential factors are subject to
the optimization. However, because mk’s can only take even
integers, their optimization is performed only once when the
corresponding functions are first included in the basis. This
optimization is conducted using a stochastic search with a
predefined number of trials. The range of the allowed values for
mk’s is set to 0−200. After a certain small number of Gaussian are
added to the basis set, the nonlinear parameters of all functions
in the set generated so far are reoptimized, again using a one-
function-at-a-time approach. In this reoptimization, only the Lk
matrix elements are varied, while the mk values remain fixed.

Table 3 compares of the nonrelativistic energies of BH and
BH+ obtained in the current work with the most accurate values
reported in the literature. All previous studies were performed
within the BO approximation, excluding diagonal BO (DBO)
and nonadiabatic corrections. However, Valeev et al.60 and
Martin72 demonstrated that both DBO and nonadiabatic
corrections are fairly significant for the BH molecule, impacting
not only the nonrelativistic energy but also other properties,

Table 2. Expectation Values (in a.u.) of SO and AMM in the
Ground State of the Boron Atoma

basis SO AMM

10 000 0.43482914 0.50591393
12 000 0.43482946 0.50591419
14 000 0.43482958 0.50591446
16 000 0.43482991 0.50591456
∞ 0.43483037 ± 0.00000046 0.50591486 ± 0.00000030

aThe numbers in parentheses are estimated uncertainties due to the
basis truncation.
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such as the bond length. For example, Valeev et al. reported a
DBO correction of 369.97 cm−1 for BH calculated at the CISD/
aug-cc-pVTZ level of theory. In this study, we incorporate the
DBO correction60 and the zero-point energy (ZPE)58 into the
reported BO energy values to facilitate a more direct comparison
with our non-BO energies (see Table 3). However, the BO +
ZPE + DBO energies still do not include the nonadiabatic
corrections. These corrections are automatically included to
infinite order in our variational non-BO nonrelativistic energy
values. With this in mind, for BH, the present total energy
obtained using 5000 ECGs is lower and, due to the nature of the
variational method, is more accurate than those calculated at the
CCSDT/d-aug-cc-pV5Z and MR-CI + Q/d-aug-cc-pV5Z levels
of theory.58

Both methods lack the variational principle, whichmeans they
cannot ensure that the energy is a strict upper bound to the true
value. For BH+, the available computational data are very
limited, with the most accurate values sourced from the NIST
Computational Chemistry Comparison and Benchmark Data-
base.62 Additionally, as the DBO correction has not been
reported for this ion yet, the reference BO energy value
presented in the table for comparison with our non-BO energy
does not include the DBO correction. As the DBO correction,
which is calculated as the expectation value of the kinetic energy
operator for the nuclei using the electronic wave function, has a
positive value, its addition to the result shown in the table would
make this result even less negative and higher than our non-BO
energy. This confirms that our present nonrelativistic BH energy
is significantly more accurate than the best energy obtained
within the BO approximation.

The ionization energies (IE) calculated using the non-
relativistic non-BO energies (Enr), the nonrelativistic non-BO
energies plus the leading relativistic corrections (Enr+rel), and the
nonrelativistic non-BO energies plus the leading relativistic and
QED corrections (Enr+rel+QED) are shown in Table 4. In addition
to the non-BO values calculated in the present work, some of the
values derived from experimental data are also shown in the
table. It can be seen that the obtained IE value using the

nonrelativistic energies (IEnr = 79 026 (7) cm−1) is less accurate
compared to the ones obtained with the inclusion of relativistic
corrections (IEnr+rel = 79 081 (53) cm−1). In computing the IE,
the QED correction has an almost negligible contribution.
IEnr+rel and IEnr+rel+QED are virtually the same within the
estimated uncertainty. It should be emphasized, however, that
the QED correction calculated in this work using expression
(18) is a very crude estimate only. It could be improved in future
studies if efficient algorithms for evaluating the Bethe logarithm
for diatomic molecules are developed. In addition to the
ionization energies calculated in this work, Table 4 shows three
experimental values. The reported uncertainty for the first
experiment63 is rather large −403 cm−1. Although the
uncertainty is not reported for the second measurement,64 a
similar error magnitude as for the first experimental value
(approximately 400 cm−1) can be expected. The most recent
experimental value from ref 59 appears to be considerably more
accurate than the other two and aligns well with the value
obtained in the present work (79 081 cm−1), falling within the
estimated theoretical uncertainty of 53 cm−1. This theoretical
uncertainty primarily arises from basis set truncation error. As
shown in Table 1, a significant contribution to the uncertainty
comes from the nonrelativitic BH energies, suggesting that a
larger number of basis functions would be required for improved
accuracy in the calculations. An even larger contribution to the
overall uncertainty, however, originates from the limited
accuracy in evaluating relativistic corrections for BH and BH+.
Future advancements in the evaluation of expectation values for
singular operators will likely require the implementation of
regularization techniques, such as integral transformation,73

plain capping,74 integral transformation of inverse interparticle
distances,75 or the regularization algorithm proposed by
Raćsai.76 In Table 5 presents the calculated dissociation energies
(D) for both BH and BH+ alongside the available experimental
and theoretical values. From the data, it is evident that both the
relativistic and QED corrections are again crucial for obtaining
an accurate value of the dissociation energy in the calculations.
For instance, in the case of the BH molecule purely
nonrelativistic dissociation energy Dnr = 28 480 (86) cm−1

differs notably from the values obtained with including the
relativistic (Dnr+rel = 28 464 (82) cm−1) and QED (Dnr+rel+QED =
28 407 (87) cm−1) corrections. The uncertainty of the available
experimental dissociation energies is also quite significant�
approximately 150 cm−1 for BH and likely even higher one for

Table 3. Comparison of the Nonrelativistic Non-BO Energies
of the BH and BH+ Molecules Obtained in This Work With
the Most Accurate Values of the Nonrelativistic BO + ZPE +
DBO Energy Available in the Literature (All in a.u.)ab

method/basis Enr

BH
this work, 5000 ECGs −25.28173
this work, extrapolated −25.28222 ± 0.00049
CCSD(T)/aug-cc-pV5Z61 −25.229208
CCSDT/d-aug-cc-pV5Z58 −25.280516
MR-CI/d-aug-cc-pV5Z58 −25.280444
MR-CI + Q/d-aug-cc-pV5Z58 −25.280646

BH+

this work, 10 000 ECGs −24.921692
this work, extrapolated −24.921732 ± 0.000040
QCISD(T)/cc-pV(T+d)Z62 −24.866935

aThe ZPE values for BH and BH+ were taken from refs 58 and 59,
respectively. The DBO correction is only added to the BH molecule’s
energy. The correction is taken from ref 60. bThe DBO correction has
not been found in the literature and, thus, it is not added to the BO
energy of BH+. However, as this correction is positive, the total energy
value without the correction being higher than the non-BO energy
indicates that the quality of the non-BO result is significantly higher
than the BO result.

Table 4. Ionization Energies (IE) of 11BH Obtained in This
Work at the Nonrelativistic Level of Theory and Then by
Including the Leading Relativistic and QED Correctionsa

basis (BH)
basis
(BH+) IEnr IEnr+rel IEnr+rel+QED

2000 4000 78 113 78 738 78 739
3000 6000 78 913 78 914 78 915
4000 8000 79 026 78 987 78 987
5000 10 000 79 019 79 028 79 028
∞ ∞ 79 026 ± 7 79 081 ± 53 79 081 ± 53
experiment, ref
63

78 800 ± 403

experiment, ref
64

78 800

experiment, ref
59

79120.3 ± 0.1

aAvailable experimental IE values are also shown for comparison. All
values are in cm−1.
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BH+. While three experimental values of D are reported for BH,
they are not in good agreement with one another, and only two
fall within the stated uncertainties. For BH+, there is a single
experimental value with an unknown uncertainty. For both
species, lack of precise experimental values makes it challenging
to perform a reliable comparison with our results and to assess
the accuracy of our computations. Additionally, all previous
theoretical values in the literature have been obtained within the
BO approximation without considering DBO and nonadiabatic
corrections, introducing another layer of uncertainty to the
comparison. As mentioned before, both of the aforementioned
corrections are significant for BH and likely important for BH+.
Nevertheless, the computedDnr value for BH in this work shows
reasonable agreement with the other theoretical values (see
Table 5).

The non-BO nonrelativistic wave functions obtained for 11BH
have been used to calculate the expectation values for the
interparticle distances and their squares. These results are
presented in Table 6. Alongside the values calculated in this
work, the table also includes related quantities derived from BO
calculations, such as re and r0. Due to the explicit inclusion of the
electron−nuclear coupling in the non-BO calculations, the
agreement between the values obtained here and those from
previous BO calculations is not particularly good. This
observation aligns with the conclusions from the earlier BO
studies,58,61,69 where it was noted that adiabatic and non-

adiabatic effects are significant when calculating properties of
diatomic systems.

Lastly, in Figure 1, we present the nucleus−nucleus pair
correlation functions calculated for the ground states of BH and
BH+ using the non-BO wave functions expanded in the largest
basis sets generated in this work. As shown, the density of the
proton in both systems is localized around the respective average
distances. However, for BH, the density is slightly less sharply
peaked and broader compared to BH+.

■ CONCLUSIONS
In this work we report the most accurate non-Born−
Oppenheimer calculations performed to date for the ground
states of 11BH and 11BH+. The calculations employ all-particle
explicitly correlated Gaussian basis functions, with extensive
variational optimization of the nonlinear parameters for each
state. This optimization is carried out using a procedure that
utilizes the analytic energy gradient with respect to the Gaussian
parameters. The resulting nonrelativistic non-BO wave
functions are used to calculate the leading relativistic and
QED corrections. The corrections are added to the non-BO
nonrelativistic energies and the results are used to calculate the
11BH dissociation energy, as well as the 11BH ionization energy.
The obtained results fall within the uncertainties of the available
experimental data, providing a reliable benchmark for future
theoretical studies. Additionally, these results offer valuable

Table 5. Comparison of the Dissociation Energies (D) of 11BH and 11BH+ Obtained in This Work With the Most Accurate
Theoretical Values and Experimental Measurementsa

Dnr Dnr+rel Dnr+rel+QED

BH
basis (BH) basis (B)
2000 10 000 28 077 28 062 28 001
3000 12 000 28 267 28 253 28 192
4000 14 000 28 348 28 335 28 273
5000 16 000 28 394 28 382 28 320
∞ ∞ 28 480 ± 86 28 464 ± 82 28 407 ± 87
CCSD(T), ref 61b 28 400
CCSD(T), ref 61c 28 505
CCSD(T), ref 61d 28 575
MR-ACPF, ref 65e 27 428
MR-DCI, ref 66f 28 859
CCSDT, ref 58g 29 653
experiment, ref 67 28 850 ± 150
experiment, ref 64 27 584
experiment, ref 68 28 505 ± 175

BH+

basis (BH+) basis (B+)
4000 2000 16 249 16 224 16 164
6000 3000 16 290 16 265 16 205
8000 4000 16 305 16 281 16 220
10 000 5000 16 312 16 288 16 227
∞ ∞ 16 322 ± 10 16 298 ± 10 16 237 ± 10
MR-CI, ref 69h 15 958
experiment, ref 64 15 728

aAll values are in cm−1. bValue obtained with aug-cc-pV5Z basis set. cValue obtained by extrapolating CCSD(T)/aug-cc-pVnZ (n = 2−5)
calculations to the infinite basis set limit using the equation E(n) = E(∞) + B exp(−C n). dValue obtained by extrapolating CCSD(T)/aug-cc-
pVnZ (n = 2−5) calculations to the infinite basis set limit using the equation = + +E l E A l( ) ( ) /( 0.5)max max

4. eMultireference averaged
coupled-pair functional (MR-ACPF) method. The computed values with aug-cc-pVnZ (n = 4−7) basis sets were extrapolated to infinite basis set
limit. fMultireference single and double excitations configuration interaction (MR-DCI) level of theory with VQZ basis set of Dunning. gThe d-
aug-cc-pV5Z and cc-pV5z basis sets have been used for Boron and hydrogen, respectively. hValence internally contracted multireference
configuration interaction (MR-CI) method with aug-cc-pV6Z basis set.
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reference points for future spectroscopic measurements of BH
and BH+.
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