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In this study, we perform a set of benchmark variational calculations for the ground state and for the 18 lowest
bound excited 2S and 2P states of the boron atom. The nonrelativistic wave function of each state is generated
in an independent calculation by expanding its wave function in terms of a large number (10 000–16 000) of
all-electron explicitly correlated Gaussian functions (ECG). The Hamiltonian used in the calculations explicitly
depends on the mass of the boron nucleus. The nonlinear parameters of the ECGs are extensively optimized with
a procedure that employs the analytic energy gradient determined with respect to these parameters. These highly
accurate nonrelativistic wave functions are used to compute the transition dipole moments and the corresponding
oscillator strengths for all allowed transitions between the considered states. These quantities are reported for
the transitions of the 10B and 11B isotopes, as well as for the boron atom with an infinite nuclear mass, ∞B, and
used to evaluate the isotopic shifts of the oscillator strengths. The results generated in this work are considerably
more accurate than the data obtained in the previous theoretical calculations.
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I. INTRODUCTION

Quantum mechanics (QM) provides a powerful framework
to perform highly accurate calculations regardless of system’s
size. There are two main obstacles in performing such calcu-
lations. The first one is related to the available basis functions
which are used in expanding the wave function of the system.
There are, in general, two types of basis functions used in
atomic and molecular QM calculations, i.e., single-particle
orbitals and explicitly correlated basis functions. The calcula-
tions performed with single-particle orbitals usually converge
very slowly; for instance, millions of terms are required in
CI calculations to reach a microhartree accuracy even for the
ground state of the helium atom [1]. In contrast, if the ba-
sis functions explicitly depend on the interelectron distances,
as it is the case for the explicitly correlated basis functions
(ECBF), the calculations converge much faster in terms of the
basis set size. Despite the usually high computational cost,
the accuracy of the results obtained in the ECBF calculations
is much higher than in the orbital calculations, particularly
when the basis functions are optimized.

Two kinds of ECBF are most popular in atomic and molec-
ular QM calculations, i.e., the Hylleraas-type functions (Hy)
and the Gaussian-type functions (ECG). The Hy functions
usually offer superior accuracy and allow to generate the most
precise data for the smallest atomic and molecular systems
such as the helium [2–7] and lithium atoms [8–13] and the H2

molecule [14–18]. However, the application of the Hy func-
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tions in calculations of atoms and molecules with more than
two–three electrons has been challenging due to difficulties in
evaluating the Hamiltonian matrix elements (see, for exam-
ple, the work on the beryllium atom [19,20]). Thus, in QM
calculations for larger atomic and molecular systems, the only
currently available ECBF option are the ECG basis functions,
which, at least in principle, enable high-accuracy calculations
of systems with an arbitrary number of electrons. For more de-
tailed information about applications of ECGs, see extended
reviews in Refs. [21,22]). However, a drawback of the ECG
functions is that, unlike in the case of the Hy functions, their
use in variational calculations does not allow to satisfy the
Kato’s cusp conditions concerning the behavior of the wave
functions of Coulomb systems at interparticle coalescence
points. Also, the ECG functions decay too rapidly at infinity.
Even though these deficiencies can be effectively remediated
by employing larger basis sets and by thoroughly optimiz-
ing the ECG nonlinear parameters, increasing the number
of ECGs in highly accurate QM calculations has been often
hindered by the availability of computational resources. This
obstacle is a bottleneck in obtaining more accurate results. It
should be noted that increasing the number of basis functions
and extending the time spent on the optimization of their
nonlinear parameters not only leads to an improved accuracy
of the total energy and the corresponding wave function of the
considered state of the system, but also improves the accuracy
of other atomic or molecular properties that are being studied.
Our recent works on the lithium atom [23,24], beryllium atom
[25], boron atom [26,27], and the LiH species [28,29] can
serve as examples of highly accurate ECG calculations of
ground and excited states of small atoms and molecules.

The use of the ECG basis in the framework of the varia-
tional method provides a tool for good representation of the
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wave function not only for the ground but also for excited
states of the system. However, more ECGs are usually needed
to achieve similar accuracy in the calculations for higher states
than for lower states. This is a reflection of the fact that
the wave functions of excited states have more sophisticated
structure. This higher complexity also increases the amount of
computational resources needed to resolve all features of the
excited-state wave functions. To speed up the optimization of
nonlinear parameters, which is the most time-consuming part
of the calculations, our in-house computer code for ECG cal-
culations employs the analytical energy gradient determined
with respect to the parameters. The availability of the analytic
energy gradient, which can be evaluated at a cost that is com-
parable to the cost of a single-point energy evaluation (only
a few times more expensive), notably reduces the amount of
the computational work. This, in turn, enables to achieve very
high accuracy of the results for both ground and excited states
as exemplified by our recent mentioned works where transi-
tion energies, fine structure splittings, and oscillator strengths
were calculated for all stable isotopes of helium [30], lithium
[23,24], beryllium [25], and boron [26,27]. In this work, we
employ a similar approach to calculate (or, for some states,
improve) the nonrelativistic transition energies and the corre-
sponding oscillator strengths for 18 lowest doublet S and P
states for all stable isotopes of the boron atom.

It is worth noting that the most accurate experimental mea-
surements are mainly available for gases composed of highly
volatile elements. In general, creating gaseous samples with
sufficient optical density can be quite challenging. For those
difficult cases, theoretical calculations become a practical
alternative to determining the spectra. As mentioned, compu-
tational methods, especially methods employing ECBFs, are
sometimes capable of providing estimates of the observables
with an accuracy that can match or exceed the accuracy of
the experimental data. To the authors’ knowledge, apart from
our previous works [26,27,31], the ECGs have only been
employed to perform calculations on the first 2P, 2S, and 2D
states of the boron atom by two other groups [32–34]. In those
studies, the oscillator strengths have not been investigated.
The calculations mainly concerned the total nonrelativistic
energies, as well as the corrections due to the finite nuclear
mass and relativistic and quantum electrodynamics effects.

This investigation of the boron atom involves nonrelativis-
tic calculations of the total and transition energies, and the
oscillator strengths for two stable boron isotopes, 10B and 11B,
and for the boron atom with an infinite nuclear mass, ∞B. The
calculations are done for the lowest nine 2P states and lowest
ten 2S states. In order to provide a quick characterization of
the considered states, in Table I we show their dominant elec-
tronic configurations taken from [35,36]. Partly due to strong
configuration mixing (especially between 2S configurations)
obtaining highly accurate results can be challenging even for
methods employing ECBFs.

II. METHOD

A. Nonrelativistic nuclear-mass-dependent Hamiltonian

In the present nonrelativistic variational calculations of
atoms, where the nuclear mass may be either finite or in-

TABLE I. Admixture of the leading single-particle configura-
tions in the wave functions of the states of the neutral boron atom
studied in this work. The data (i.e., the configurations and the corre-
sponding percentages) are taken from Refs. [35,36].

State Leading config. Percent 2nd config. Percent

2 2P 2s2 2p (2Po) 95% 2s2 2p3 (2Po) 4%
3 2P 2s2 3p (2Po) 91% 2p2 (1S) 3p (2Po) 7%
4 2P 2s2 4p (2Po) 92% 2p2 (1S) 4p (2Po) 7%
5 2P 2s2 5p (2Po) 92% 2p2 (1S) 5p (2Po) 7%
6 2P 2s2 6p (2Po) 92% 2p2 (1S) 6p (2Po) 7%
7 2P 2s2 7p (2Po) 92% 2p2 (1S) 7p (2Po) 7%
8 2P 2s2 8p (2Po) 92% 2p2 (1S) 8p (2Po) 7%
9 2P 2s2 9p (2Po) 92% 2p2 (1S) 9p (2Po) 7%
10 2P 2s2 10p (2Po)
3 2S 2s2 3s (2S) 95% 2p2 (1S) 3s (2S) 5%
4 2S 2s2 4s (2S) 95% 2p2 (1S) 4s (2S) 5%
5 2S 2s2 5s (2S) 86% 2p2 (1S) 5s (2S) 5%
6 2S 2s2 6s (2S) 77% 2s 2p2 (1S) (2S) 12%
7 2S 2s 2p2 (2S) 35% 2s2 7s (2S) 31%
8 2S 2s2 7s (2S) 58% 2s 2p2 (2S) 31%
9 2S 2s2 8s (2S) 83% 2s 2p2 (2S) 31%
10 2S 2s2 9s (2S) 95% 2p2 (1S) 9s (2S) 5%
11 2S 2s2 10s (2S)
12 2S 2s2 11s (2S)

finite, is is first necessary to separate out the translational
motion of the system as a whole. The Hamiltonian is ob-
tained by separating out the atom’s center-of-mass motion
from the nonrelativistic laboratory-frame Hamiltonian. This
separation yields an “internal” Hamiltonian that is used in
the calculations. The separation is rigorous and reduces the
N-particle problem (N = 6 for the boron atom consisting of
five electrons and a nucleus) to an n-pseudoparticle problem
(n = N − 1 = 5) represented by the internal Hamiltonian ex-
pressed in terms of the internal Cartesian coordinates ri’s.
These internal coordinates are chosen to be the position vec-
tors of the electrons with respect to the nucleus (which serves
as a reference particle). The internal nonrelativistic Hamilto-
nian has the following form in atomic units:

H int
nr = −1

2

⎛
⎝ n∑

i=1

1

μi
∇2

ri
+

n∑
i=1

n∑
j �=i

1

m0
∇′

ri
∇r j

⎞
⎠

+
n∑

i=1

q0qi

ri
+

n∑
i=1

n∑
j<i

qiq j

ri j
. (1)

Here q0 = 5 is charge of the nucleus, qi = −1 (i = 1–
5) are the electron charges, m0 is the nuclear mass
(m0 = 18 247.468 631 92 for 10B and m0 = 200 63.736 943 13
for 11B [37]), μi = m0mi/(m0 + mi ) is the reduced mass of
electron i (mi = 1, i = 1–5), and ri j = |r j − ri| is the distance
between electrons i and j. The prime symbol (′) stands for the
vector and matrix transpose.

The calculations involving the nonrelativistic Hamiltonian
H int

nr can be carried out for both finite and infinite masses of the
B nucleus. They yield the nonrelativistic ground- and excited-
state energies (Enr) and the corresponding wave functions.
Both the energy and the wave function depend on the mass
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of the nucleus. In this work we report both the finite-mass and
infinite-mass results. It should be noted that Hamiltonian (1)
can be conveniently written in a compact matrix form [21] as

H int
nr = −∇′

rM∇r +
n∑

i=1

q0qi

ri
+

n∑
i=1

n∑
j<i

qiq j

ri j
, (2)

where

∇r =

⎛
⎜⎝

∇r1
...

∇rn

⎞
⎟⎠ (3)

is a 3n-component gradient vector and M = M ⊗ I is the
Kronecker product of an n × n matrix M and 3 × 3 iden-
tity matrix I. Matrix M has diagonal elements equal to
1/(2μ1), . . . , 1/(2μ5), while all off-diagonal elements are
equal to 1/(2m0).

B. Basis functions

The n-electron explicitly correlated Gaussian functions are
used to construct the spatial parts of the wave functions for
the P and S states considered in this work. The S-type ECG
functions have the following form:

φk = exp[−r′ (Ak ⊗ I) r], (4)

where

r =

⎛
⎜⎝

r1
...

rn

⎞
⎟⎠ (5)

is a 3n-component column vector consisting of n internal
coordinate vectors, Ak is an n × n positive-definite real sym-
metric matrix. The positive definiteness of Ak is required for
ensuring that the wave function remains square integrable.

The P-type ECGs contain an additional prefactor before
the Gaussian and read as follows:

φk (r) = zik exp[−r′(Ak ⊗ I)r]. (6)

Here zik is the z coordinate of the ith electron, while ik is
the electron label, which can vary in the (1, . . . , n) range. ik
represents an adjustable integer parameter in the calculations.
This parameter is specific to each basis function and its value
is determined variationally (i.e., based on how well the energy
is improved) when the function is first added to the basis set.
The zik is a Cartesian spherical-harmonic angular prefactor
that generates basis functions corresponding to the definite
values of the total orbital angular momentum (L = 1) and its
projection on the z axis (ML = 0). A proper (L = 1, ML = 0)
ECG is obtained regardless of the value of electron-label index
ik . Treating ik as a variational parameter and optimizing it is
optional. Due to indistinguishability of the electrons, choosing
a fixed value of ik (for example, ik = 1) and not optimizing
it, but only optimizing the nonlinear exponential parameters
(the elements of matrices Ak), should, in principle, lead to the
same outcome provided the optimization process is thorough
and yields the global minimum. For more information on the
ECG basis sets used in high-accuracy atomic calculations see
[21,22,25,30].

C. Oscillator strengths

In this work, we calculate the absorption oscillator
strengths in both the length (L) and velocity (V ) gauges. For
a transition between initial state i and final state f they are
expressed as follows [38,39]:

f L
i f = 2

3gi
�Ei f

∣∣μL
i f

∣∣2
,

∣∣μL
i f

∣∣2 = |〈ψi|μL|ψ f 〉|2, (7)

f V
i f = 2

3 gi �Ei f

∣∣μV
i f

∣∣2
,

∣∣μV
i f

∣∣2 = |〈ψi|μV |ψ f 〉|2, (8)

respectively, where gi = 2Ji + 1 is the statistical weight of
the lower level (Ji is the total angular momentum quantum
number), �Ei f = |Ei − E f | is the nonrelativistic transition
energy between the initial state ψi and final state ψ f , and μL

and μV are the transition dipole operators in the length and
velocity gauge, respectively.

For an n-electron atom or, in general, for a Coulomb sys-
tem with arbitrary charges and masses, the expressions for the
transition dipole moments with respect to the origin located
at the center of mass have the following form in the internal
coordinates [40,41]:

μL =
n∑

i=1

(
qi − mi

mtot
qtot

)
ri (9)

and

μV =
n∑

i=1

(
q0

m0
− qi

mi

)
pi, (10)

where pi = −i ∇ri , qtot = ∑n
i=0 qi is the total charge of the

system (zero for a neutral atom), and mtot = ∑n
i=0 mi is the

total mass of the system. It should be noted that the above
expressions for μL and μV are consistent with the Thomas-
Reiche-Kuhn sum rule,

∑
f

fi f = n, (11)

for any values of the charges and masses of the constituent
particles and are certainly valid for all isotopes considered in
this work.

As mentioned, due to the dependence of the internal
Hamiltonian (2) on the nuclear mass, the resulting wave func-
tions ψi and ψ f also carry over the dependence on the nuclear
mass. Thus, the wave functions for 10B, 11B, and ∞B are
slightly different and the calculated oscillator strengths for the
different isotopes are also slightly different. The degree of this
dependence on the nuclear mass will be elucidated in Sec. III.

For the determination of oscillator strengths, only the ma-
trix elements between the S (L = 0, ML = 0) and P (L = 1,
ML = 0) states need to be evaluated (for more details see
Sec. 2.4 in Ref. [23]). The expressions for the transition matrix
elements in the length and velocity gauges with ECG basis
functions (4) and (6) are available in our previous works
[23,25].

It is noteworthy that some of the previous studies [42,43]
have reported the line strength (S). In the length gauge, the line
strength (SL), oscillator strength ( f L), and transition dipole
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moment (μL) are related as follows:

f L
i f = 2

3 gi
�Ei f SL, SL = ∣∣μL

i f

∣∣2
. (12)

Tachiev and Froese Fischer have reported the line strengths
in both the length (SV ) and velocity (SV ) gauges [44,45].
The latter one can be readily computed using the following
relationship:

f V
i f = 2

3 gi
�Ei f SV , SV =

∣∣μV
i f

∣∣2

�E2
i f

. (13)

To the best of the authors’ knowledge, the transition dipole
moments for B have never been reported by other research
groups. They can serve as valuable data for benchmarking less
accurate (and less computationally expensive) approaches. In
this work, both the transition dipole moments and oscillator
strengths will be presented in subsequent sections, as was
done in our prior works [23,25]. Given the extensive data set
in this study, the line strength values will not be included.
Nevertheless, the latter quantity can be readily calculated from
the transition dipole moment or the oscillator strength values
using Eqs. (12) or (13).

III. RESULTS

The lowest nine Rydberg 2P states and the lowest ten
Rydberg 2S states of the boron atom are studied in this work.
In the first step of the calculations, the nonrelativistic wave
functions and the corresponding energies are obtained using
the standard Rayleigh-Ritz variational method. In generating
the ECG basis set for each state, the internal Hamiltonian
corresponding to the 11B is used. The basis sets generated for
all considered states of the 11B isotope are subsequently used
to obtain the energies and the corresponding wave functions
for 10B and ∞B. Since the change of the wave function going
from one isotope to another is rather small, it is not necessary
to reoptimize basis sets for each isotope independently. A sim-
ple adjustment of the linear variational parameters by means
of solving the generalized eigenvalue problem for a specific
isotope is well sufficient for capturing this change.

The present calculations have been performed on three
different computer clusters equipped with AMD EPYC 7642,
AMD EPYC 7502, and Intel Xeon E5-2695v3 CPUs (central
processing units) and used several hundreds of CPU cores
at any given time. They lasted continuously for over a year
with the largest fraction of CPU time spent on growing the
basis set and optimizing the nonlinear parameters of the basis
functions. The basis set was generated independently for each
of the considered states of the boron atom, up to the size
of 16 000 ECGs. The approach used in the optimization was
described in our previous works (see, for example, Ref. [27])).
Our code is written in FORTRAN and makes use of MPI (mes-
sage passing interface) library to facilitate parallelism. Most
of the calculations were performed using extended precision
(also known as extended double precision or fp80), which
represents float-point numbers with 80 bits of data (as opposed
to 64 bits for the standard double precision, fp64). The use of
the extended precision leads to slower calculations (typically
by a factor of 5) but improves the quality of the optimization

and ensures notably better numerical stability, in particular,
when very large basis sets are employed.

The linear and nonlinear parameters of all non-BO wave
functions for the considered states of the boron atom gener-
ated in this work can be shared with the interested readers
upon request.

A. Nonrelativistic energy

Table II shows the nonrelativistic energies (Enr) of the three
2P and three 2S states of ∞B using basis sets with increas-
ingly larger number of functions. Some of the most accurate
values in the literature are also presented for comparison
[33,34,46–50]. Generating nonrelativistic wave functions and
corresponding energies is the most computationally demand-
ing part of the calculations. It has taken a total of almost three
years of continuous computing on a parallel computer system
using many tens and even hundreds of cores at any given time.
The calculations were performed with our in-house computer
code, which makes use of the MPI (message passing interface)
protocol for parallelism. By far the largest fraction of the
computer time is spent to grow the basis set and optimize
the nonlinear parameters of the Gaussians. The nonrelativistic
variational calculations yield basis sets of progressively larger
size in a process that involves growing the basis set from a
small number of functions to its final size of 16 000 functions.
The growing of the basis set for each state is performed inde-
pendently from other states. The growing procedure involves
adding new functions to the set and variationally optimizing
their nonlinear parameters using a procedure that employs the
analytical energy gradient determined with respect to these
parameters. More details about the basis-set enlargement pro-
cedure can be found in our previous works [21,30].

It is clear from the table that, due to employing a very
large number of ECGs in the wave-function expansion of
each state, the calculated energies in this work are the most
accurate nonrelativistic energies reported for boron atom to
date. However, the high accuracy of the variational energies
in this work is not solely due to employing larger number
of ECG basis functions in calculations. A comparison of our
nonrelativistic energies with the energies obtained in other
ECG calculations (at the same basis size) shows that our
energies are lower. We attribute this higher accuracy to the
efficient optimization algorithm implemented in our code. For
instance, the ground-state energy of −24.653 867 537 hartree
was obtained using 8192 ECGs by Puchalski et al. [33], while
our calculation performed with 8000 ECGs yields a lower
value of −24.653 867 60 hartree. To the authors’ knowledge,
only the ground state of boron atom, i.e., the 2 2P state, has
been investigated using ECBF by other groups [33,34] and
there is no study with ECBF of any excited 2P or 2S states
except for the ones previously reported by the present authors
[26,27,31,51]. There have been some studies on the excited
states with MCHF [44], MCSCF [47,52], and CI/Hy-CI [53]
methods. However, the numerical uncertainties in the reported
energies are orders of magnitude larger than the ones achieved
in this work (see Table II).

In Table III, the nonrelativistic energies for all the 2S
and 2P states considered in this study are provided. In this
table two values have been shown for each state: the first
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TABLE II. Convergence of the nonrelativistic energy (in atomic
units) for several representative states of ∞B obtained in this work.
We also provide comparison with the best literature values obtained
with various theoretical methods, i.e., the configuration interaction
method (CI), the multiconfiguration interaction self-consistence
field (MCSCF), the partitioned-correlation-function-interaction
method (PCFI), the deconstrained partitioned-correlation-function-
interaction method (DPCFI), the Hylleraas-CI method (Hy-CI), the
diffusion Monte Carlo method (DMC), and the variational method
employing the ECG basis functions. Some of the quoted energies
are obtained by extrapolation to the infinite basis set limit.

State Method Ref. Basis Enr

2 2P Hy-CI [46] N =1158a −24.648 145 22
MCSCF [47] −24.652 032

PCFI [48] n=10b −24.653 464 335
DPCFI [48] n=10b −24.653 523 595
DMC [49] −24.653 790 (3)

CI [50] lmax =20 −24.653 837 33
CI [50] ∞ −23.653862(3)

ECG lobes [34] 1873 −24.653 854 17
ECG [33] 8192 −24.653 867 537
ECG [33] ∞ −24.653 868 05(45)
ECG This work 6000 −24.653 866 85
ECG This work 8000 −24.653 867 60
ECG This work 10000 −24.653 868 03
ECG This work 12000 −24.653 868 27
ECG This work 14000 −24.653 868 42
ECG This work 16000 −24.653 868 53
ECG This work ∞ −24.653 868 66(13)

3 2S MCSCF [47] −24.469 718
ECG This work 6000 −24.471 393 30
ECG This work 8000 −24.471 393 44
ECG This work 10000 −24.471 393 52
ECG This work 12000 −24.471 393 58
ECG This work 14000 −24.471 393 61
ECG This work 16000 −24.471 393 64
ECG This work ∞ −24.471 393 68(4)

6 2P ECG This work 6000 −24.365 579 5
ECG This work 8000 −24.365 584 1
ECG This work 10000 −24.365 585 7
ECG This work 12000 −24.365 586 4
ECG This work 14000 −24.365 586 8
ECG This work 16000 −24.365 587 6
ECG This work ∞ −24.365 588 4(8)

7 2S ECG This work 6000 −24.364 294 3
ECG This work 8000 −24.364 315 6
ECG This work 10000 −24.364 322 9
ECG This work 12000 −24.364 326 4
ECG This work 14000 −24.364 328 5
ECG This work 16000 −24.364 331 2
ECG This work ∞ −24.364 334 5(33)

10 2P ECG This work 6000 −24.352 93
ECG This work 8000 −24.353 04
ECG This work 10000 −24.353 07
ECG This work 12000 −24.354 34
ECG This work 14000 −24.354 35
ECG This work 16000 −24.354 40
ECG This work ∞ −24.354 450(53)

TABLE II. (Continued.)

State Method Ref. Basis Enr

11 2S ECG This work 6000 −24.354 32
ECG This work 8000 −24.354 59
ECG This work 10000 −24.354 66
ECG This work 12000 −24.354 70
ECG This work 14000 −24.354 72
ECG This work 16000 −24.354 81
ECG This work ∞ −24.354 92(11)

aN is the total number of terms in the expansion.
bn is the maximum principal quantum number of the orbitals used in
the calculation.

one represents the variational energy computed using 16 000
ECG basis functions, while the second corresponds to the
extrapolated energy derived from the energies obtained using
10 000−16 000 ECG basis functions (for more information
about the extrapolation, see Ref. [27]). Furthermore, as one
can see from the Tables II and III, the present variational
calculations are well converged at the nonrelativistic level for
all considered 2P and 2S states. However, due to the increased
complexity of wave function with the increasing excitation
level, there are fewer converged digits in the energy for higher
states than for the lower ones. For example, for the lowest
(2 2P) state and the highest (12 2S) state at least six and four
digits after the decimal point are converged, respectively.

It should be noted that, in comparison with energy con-
vergence rate for an atomic species with the same number of
electrons, namely, the C+ ion [54], the convergence rate for
boron atom is somewhat slower. The reason for this behavior
can be found in a stronger configuration mixing in the boron
atom than in the C+ ion. Also, the mixing is more significant
for the S states (see Table I). For example, in the case of the
2s 2p2 (7 2S) state, the contribution of the leading configura-
tion decreases to 35%. While the ECG basis functions can
handle this admixture of various configurations, it does slow
down the convergence rate of the calculation. Lastly, a little
higher nuclear charge value in the C+ ion makes the elec-
tron correlation effects somewhat less significant in relative
terms.

It is worth noting that the lowest five 2S states of the
boron atom were studied by our group before [27]. In that
work we also used basis sets of up to 16 000 ECGs in the
calculations. However, the computed energies and the corre-
sponding uncertainties reported in this work are somewhat
better converged. The improvement is achieved by perform-
ing several additional optimization cycles in the variational
energy minimization of the ECGs. Consequently, the values
of the nonrelativistic energies of the ground and excited states
of the boron atom reported here should be considered more
accurate compared to the energies reported in Ref. [27].

The main aim of this work is to calculate the oscillator
strengths of all transitions between the considered S and P
states of the two stable isotopes of the boron atom. The os-
cillator strengths are calculated at the nonrelativistic level of
theory. Due to presence of the nuclear mass in the Hamilto-
nian (2), the nuclear mass effects are explicitly present in the
calculated total energies and transition energies.
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TABLE III. Nonrelativistic energies (Enr) obtained with the largest basis sets of 16 000 ECGs used in this work as well as the corresponding
extrapolated values. The data for the lowest nine 2P and ten 2S states of the boron atom (10B, 11B, and ∞B) are presented. The values in
parentheses are estimated uncertainties due to the extrapolation. All values are in atomic units.

State Basis 10B 11B ∞B State Basis 10B 11B ∞B

2 2P 16000 −24.652 502 68 −24.652 626 32 −24.653 868 53 3 2S 16000 −24.470 019 349 −24.470 143 748 −24.471 393 641

∞ −24.652 502 81(13) −24.652 626 45(13) −24.653 868 66(13) ∞ −24.470 019 386(38) −24.470 143 786(38) −24.471 393 679(38)

3 2P 16000 −24.430 973 92 −24.431 097 90 −24.432 343 61 4 2S 16000 −24.401 819 49 −24.401 943 49 −24.403 189 33

∞ −24.430 974 04(13) −24.431 098 02(13) −24.432 343 73(13) ∞ −24.401 819 59(10) −24.401 943 59(10) −24.403 189 43(10)

4 2P 16000 −24.389 170 2 −24.389 294 0 −24.390 538 7 5 2S 16000 −24.378 424 0 −24.378 547 8 −24.379 791 9

∞ −24.389 170 30(17) −24.389 294 20(17) −24.390 538 90(17) ∞ −24.378 424 30(31) −24.378 548 20(31) −24.379 792 20(31)

5 2P 16000 −24.372 547 54 −24.372 671 37 −24.373 915 48 6 2S 16000 −24.367 802 37 −24.367 925 89 −24.369 167 05

∞ −24.372 550 00(30) −24.372 670 00(30) −24.373 920 00(30) ∞ −24.367 800 0(11) −24.367 930 0(11) −24.369 170 0(11)

6 2P 16000 −24.364 219 95 −24.364 343 75 −24.365 587 57 7 2S 16000 −24.362 977 53 −24.363 100 07 −24.364 331 19

∞ −24.364 220 75(80) −24.364 344 55(80) −24.365 588 37(80) ∞ −24.362 980 9(33) −24.363 103 4(33) −24.364 334 5(33)

7 2P 16000 −24.359 451 53 −24.359 575 31 −24.360 818 96 8 2S 16000 −24.360 203 04 −24.360 326 18 −24.361 563 42

∞ −24.359 453 9(24) −24.359 577 7(24) −24.360 821 4(24) ∞ −24.360 208 6(56) −24.360 331 7(56) −24.361 569 0(56)

8 2P 16000 −24.356 464 89 −24.356 588 66 −24.357 832 20 9 2S 16000 −24.357 249 41 −24.357 373 05 −24.358 615 29

∞ −24.356 475(10) −24.356 599(10) −24.357 842(10) ∞ −24.357 265(16) −24.357 389(16) −24.358 631(16)

9 2P 16000 −24.354 458 31 −24.354 582 06 −24.355 825 53 10 2S 16000 −24.355 037 07 −24.355 160 79 −24.356 403 81

∞ −24.354 481(23) −24.354 605(23) −24.355 848(23) ∞ −24.355 075(38) −24.355 199(38) −24.356 442(38)

10 2P 16000 −24.353 030 51 −24.353 154 26 −24.354 397 67 11 2S 16000 −24.353 441 13 −24.353 564 87 −24.354 808 08

∞ −24.353 083(53) −24.353 207(53) −24.354 450(53) ∞ −24.353 55(11) −24.353 67(11) −24.354 92(11)

12 2S 16000 −24.352 255 89 −24.352 379 63 −24.353 622 90

∞ −24.352 47(21) −24.352 59(21) −24.353 84(21)

Table IV shows the isotope-dependent transition ener-
gies obtained in this work, expressed in wave numbers (the
hartree to cm−1 conversion factor adopted in this work is
219 474.631 363 20 [55]). The same extrapolation procedure
as the one applied for the nonrelativistic energies has been
used to obtain the nonrelativistic transition energies in the
infinite basis-set limit. Rather than computing the total error
as a root mean square of the individual uncertainties of the en-
ergies of the two states, we analyzed the convergence patterns
of the energy difference and determined the total uncertainty
based on that information. This is because the energies of both
states involved in a transition are variational upper bounds
and, thus, the corresponding errors partially cancel out when
the difference is computed. The uncertainties due to the basis
truncation error are small for the lower transitions (less than
0.1 cm−1) but increase with the excitation level.

Due to the absence of the relativistic and QED correc-
tions, the accuracy of the nonrelativistic transition energies
obtained in this work cannot be examined through a direct
comparison with the available experimental data. Further-
more, comparatively low accuracy of the calculations reported
in the literature makes them unsuitable for benchmarking
the precision of the present data. In the work to follow we
will present more accurate transition energies obtained with
inclusion of the leading relativistic and QED corrections.

B. Oscillator strengths

Table V shows how the oscillator strengths obtained in
the length and velocity gauges converge with the size of
the ECG basis set for some of the studied transitions. The
data provide a good illustration of the convergence pattern
that is observed for all transitions calculated in this work.
As one can see, the obtained values are well converged for

lower transitions. For instance, the obtained values in the
length and velocity gauges for 2 2P→3 2S transition have
six and seven significant figures converged, respectively. This
is several orders of magnitude better than the previous re-
ported results [42,44,56,57]. In all prior theoretical studies,
only transitions between the low-lying S and P states were
considered. Thus, for transitions involving higher-lying states,
the oscillator strengths presented here are obtained in direct
calculations. It should be mentioned that the previous most
accurate calculations of the boron oscillator strengths have
been performed using the mean-field approaches. Tachiev and
Froese Fischer [44] employed the MCHF method to calculate
the theoretical lifetimes for the 2s2 2p, 2s 2p2, 2p3, 2s2 3s,
2s2 3p, 2s2 3d , and 2s 2p 3s states. Later Fuhr and Wiese [42]
computed the oscillator strengths for these states using the val-
ues reported by Tachiev and Froese Fischer and they estimated
the uncertainties of their results. Another MCHF study by
Wang et al. [56] on the spectra of the boron atom reported the
oscillator strengths obtained in both the length and velocity
gauges for the transitions between the 2s2 2p, 2s2 3p, and
2s2 3s, 2s2 3d , 2s2 4s, 2s2 4d , 2s2 5s states. Recently, more
accurate oscillator-strength values corresponding to the two
gauges were calculated using the K-matrix method by Argenti
and Moccia [57]. The values obtained in this work using the
ECG basis functions are in agreement with the MCHF values
[42,44] and the values obtained with the K-matrix method
[57], while the uncertainty of our data is roughly 2–4 orders
of magnitude smaller.

For instance, the values of 7.869 26(13) × 10−2 and
7.869 368(68) × 10−2 were obtained in this work for the
2 2P→3 2S transition using the length and velocity gauges,
respectively. They are in good agreement with the value
of 7.83(23) × 10−2 calculated in the length gauge using
the MCHF method [42,44] and values of 7.87 × 10−2 and
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TABLE IV. Nonrelativistic transition energies (�Enr) for the lowest nine 2P and ten 2S states of the boron atom (10B, 11B, and ∞B). All
values are in cm−1. The uncertainty estimates due to the extrapolation are shown in parentheses.

Transition 10B 11B ∞B Transition 10B 11B ∞B

2 2P → 3 2S 40050.484(22) 40050.316(22) 40048.630(22) 2 2P → 4 2S 55018.609(8) 55018.530(8) 55017.732(8)
2 2P → 5 2S 60153.266(46) 60153.226(46) 60152.821(46) 2 2P → 6 2S 62484.23(26) 62484.26(26) 62484.49(26)
2 2P → 7 2S 63542.57(86) 63542.81(86) 63545.24(86) 2 2P → 8 2S 64151.2(11) 64151.3(11) 64152.4(11)
2 2P → 9 2S 64797.2(34) 64797.2(34) 64797.2(34) 2 2P → 10 2S 65278.8(74) 65278.7(74) 65278.6(74)
2 2P → 11 2S 65616(21) 65616(21) 65615(21) 2 2P → 12 2S 65850(47) 65850(47) 65849(47)
3 2P → 3 2S 8569.462(20) 8569.553(20) 8570.472(20) 3 2P → 4 2S 6398.665(7) 6398.662(7) 6398.632(7)
3 2P → 5 2S 11533.316(52) 11533.352(52) 11533.715(52) 3 2P → 6 2S 13864.28(28) 13864.38(28) 13865.37(28)
3 2P → 7 2S 14922.62(87) 14922.93(87) 14926.14(87) 3 2P → 8 2S 15530.9(15) 15531.1(15) 15533.0(15)
3 2P → 9 2S 16176.9(37) 16177.0(37) 16177.8(37) 3 2P → 10 2S 16658.1(81) 16658.2(81) 16658.8(81)
3 2P → 11 2S 16996(21) 16996(21) 16996(21) 3 2P → 12 2S 17226(51) 17226(51) 17226(51)
4 2P → 3 2S 17744.300(43) 17744.415(43) 17745.569(43) 4 2P → 4 2S 2776.183(21) 2776.210(21) 2776.475(21)
4 2P → 5 2S 2358.468(38) 2358.481(38) 2358.608(38) 4 2P → 6 2S 4689.43(27) 4689.50(27) 4690.26(27)
4 2P → 7 2S 5747.75(87) 5748.05(87) 5751.01(87) 4 2P → 8 2S 6356.1(15) 6356.2(15) 6357.8(15)
4 2P → 9 2S 7002.4(34) 7002.4(34) 7003.0(34) 4 2P → 10 2S 7482.6(87) 7482.7(87) 7483.0(87)
4 2P → 11 2S 7821(21) 7821(21) 7821(21) 4 2P → 12 2S 8051(51) 8051(51) 8051(51)
5 2P → 3 2S 21392.515(74) 21392.641(74) 21393.912(74) 5 2P → 4 2S 6424.30(15) 6424.34(15) 6424.72(15)
5 2P → 5 2S 1289.751(12) 1289.750(12) 1289.736(12) 5 2P → 6 2S 1041.26(18) 1041.33(18) 1041.98(18)
5 2P → 7 2S 2099.56(81) 2099.85(81) 2102.70(81) 5 2P → 8 2S 2707.8(15) 2707.9(15) 2709.4(15)
5 2P → 9 2S 3354.2(34) 3354.2(34) 3354.6(34) 5 2P → 10 2S 3835.1(80) 3835.1(80) 3835.3(80)
5 2P → 11 2S 4173(21) 4173(21) 4173(21) 5 2P → 12 2S 4407(47) 4407(47) 4407(47)
6 2P → 3 2S 23220.09(20) 23220.22(20) 23221.55(20) 6 2P → 4 2S 8251.96(19) 8252.00(19) 8252.44(19)
6 2P → 5 2S 3117.29(15) 3117.29(15) 3117.34(15) 6 2P → 6 2S 786.281(32) 786.222(32) 785.637(32)
6 2P → 7 2S 271.94(74) 272.22(74) 275.01(74) 6 2P → 8 2S 880.4(12) 880.5(12) 882.0(12)
6 2P → 9 2S 1526.7(32) 1526.7(32) 1527.1(32) 6 2P → 10 2S 2008.3(71) 2008.3(71) 2008.5(71)
6 2P → 11 2S 2343(22) 2343(22) 2344(22) 6 2P → 12 2S 2585(41) 2585(41) 2585(41)
7 2P → 3 2S 24266.21(62) 24266.35(62) 24267.72(62) 7 2P → 4 2S 9298.11(58) 9298.16(58) 9298.64(58)
7 2P → 5 2S 4163.42(56) 4163.43(56) 4163.52(56) 7 2P → 6 2S 1832.45(35) 1832.39(35) 1831.84(35)
7 2P → 7 2S 773.919(52) 773.646(52) 770.899(52) 7 2P → 8 2S 165.78(84) 165.64(84) 164.23(84)
7 2P → 9 2S 480.6(27) 480.6(27) 480.9(27) 7 2P → 10 2S 962.3(65) 962.3(65) 962.5(65)
7 2P → 11 2S 1299(20) 1299(20) 1299(20) 7 2P → 12 2S 1533(46) 1533(46) 1534(46)
8 2P → 3 2S 24919.5(29) 24919.6(29) 24921.0(29) 8 2P → 4 2S 9951.7(25) 9951.7(25) 9952.2(25)
8 2P → 5 2S 4816.8(27) 4816.8(27) 4816.9(27) 8 2P → 6 2S 2486.0(23) 2486.0(23) 2485.4(23)
8 2P → 7 2S 1427.5(19) 1427.2(19) 1424.5(19) 8 2P → 8 2S 819.1(13) 819.0(13) 817.6(13)
8 2P → 9 2S 173.00(82) 172.97(82) 172.69(82) 8 2P → 10 2S 307.3(61) 307.3(61) 307.4(61)
8 2P → 11 2S 641(23) 641(23) 641(23) 8 2P → 12 2S 880(44) 880(44) 880(44)
9 2P → 3 2S 25357.1(56) 25357.2(56) 25358.6(56) 9 2P → 4 2S 10389.0(56) 10389.0(56) 10389.6(56)
9 2P → 5 2S 5254.4(55) 5254.4(55) 5254.5(55) 9 2P → 6 2S 2922.9(57) 2922.9(57) 2922.4(57)
9 2P → 7 2S 1864.8(50) 1864.5(50) 1861.8(50) 9 2P → 8 2S 1256.4(44) 1256.3(44) 1254.9(44)
9 2P → 9 2S 611.81(77) 611.78(77) 611.51(77) 9 2P → 10 2S 129.0(16) 129.0(16) 129.0(16)
9 2P → 11 2S 204(19) 204(19) 204(19) 9 2P → 12 2S 444(39) 444(39) 444(39)
10 2P → 3 2S 25662(14) 25662(14) 25663(14) 10 2P → 4 2S 10694(14) 10694(14) 10694(14)
10 2P → 5 2S 5562(11) 5562(11) 5562(11) 10 2P → 6 2S 3229(13) 3229(13) 3228(13)
10 2P → 7 2S 2170(13) 2170(13) 2167(13) 10 2P → 8 2S 1562(12) 1562(12) 1560(12)
10 2P → 9 2S 914(12) 914(12) 914(12) 10 2P → 10 2S 434.0(65) 434.0(65) 434.0(65)
10 2P → 11 2S 98.9(88) 98.9(88) 98.9(88) 10 2P → 12 2S 132(38) 132(38) 133(38)

7.61 × 10−2 obtained by the K-matrix method in the length
and velocity gauges [57]. In the case of the aforementioned
transition, our values calculated using different gauges agree
to within 4 digits and both values are within the estimated
uncertainty range of each other, while such an agreement is
not seen in the MCHF values [44,56] or the values obtained
with the K-matrix method [57] (see Table V).

In general, it appears that the values obtained with the
K-matrix method [57] are more accurate than the MCHF
values [44]. For example, in the case of 4 2P→9 2S transi-

tion, the 5.36 × 10−3 and 5.17 × 10−3 values obtained in the
length and velocity gauges, respectively, are in good agree-
ment with the values obtained in this work [5.154(20) × 10−3

and 5.156(25) × 10−3] while the MCHF value obtained in
Refs. [42,44] (3.03 × 10−3) is very far from the values ob-
tained using the two former methods.

Efforts to enhance the accuracy of the results may in-
clude alternative approaches to estimating the uncertainties.
Utilizing the theoretical framework of Weinhold and others
[58–60], rigorous upper and lower bounds for the oscillator
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TABLE V. Nonrelativistic absorption oscillator strengths in
length ( f L) and velocity gauges ( f V ) for some of the studied tran-
sitions obtained for the case of an infinite nuclear mass (∞B). The
oscillator strength uncertainties (given in parentheses) are computed
as root mean squares of the uncertainties of |μL

i f |2 or |μV
i f |2 and �Ei f ,

where �Ei f is the difference between the nonrelativistic energies of
the initial (i) and final ( f ) states. The calculations in Ref. [44] were
performed in the framework of the nonrelativistic multiconfiguration
Hartree-Fock (MCHF) method. The uncertainty is calculated based
on procedure in Ref. [42].

Basis(S) Basis(P) f L f V

2 2P → 3 2S

10000 10000 7.868 713 × 10−2 7.869 260 × 10−2

12000 12000 7.868 999 × 10−2 7.869 218 × 10−2

14000 14000 7.869 045 × 10−2 7.869 302 × 10−2

16000 16000 7.869 130 × 10−2 7.869 312 × 10−2

∞ ∞ 7.869 25(13) × 10−2 7.869 350(42) × 10−2

MCHF 7.83(23) × 10−2

[42,44]
MCHF 7.83(23) × 10−2

[51]
K matrix 7.87 × 10−2 7.61 × 10−2

[52]

3 2S → 3 2P

10000 10000 1.051 866 16 1.051 793 57
12000 12000 1.051 861 94 1.051 793 69
14000 14000 1.051 859 29 1.051 799 38
16000 16000 1.051 856 80 1.051 809 77
∞ ∞ 1.0518 53 7(26) 1.051 827(15)
MCHF 1.05(11)
[42,44]
MCHF 1.07 1.08
[51]
K matrix 1.05 1.04
[52]

4 2P → 9 2S

10000 13000 5.191 31 × 10−3 5.195 57 × 10−3

12000 14000 5.192 33 × 10−3 5.194 02 × 10−3

14000 15000 5.189 78 × 10−3 5.192 19 × 10−3

16000 16000 5.176 49 × 10−3 5.181 17 × 10−3

∞ ∞ 5.157(17) × 10−3 5.164(20) × 10−3

MCHF 3.03(76) × 10−3

[42,44]
K matrix 5.36 × 10−3 5.2 × 10−3

[52]

9 2S → 8 2P

10000 13000 2.722 931 08 2.707 138 75
12000 14000 2.713 436 27 2.713 636 18
14000 15000 2.708 979 74 2.716 802 64
16000 16000 2.707 481 31 2.717 366 01
∞ ∞ 2.707(19) 2.719(19)

9 2P → 11 2S

10000 13000 8.493 073 7 × 10−1 7.237 994 1 × 10−1

12000 14000 8.393 109 7 × 10−1 7.278 517 5 × 10−1

14000 15000 8.327 723 4 × 10−1 7.312 693 2 × 10−1

16000 16000 8.302 581 0 × 10−1 7.746 667 6 × 10−1

∞ ∞ 8.10(90) × 10−1 8.52(79) × 10−1

strength ( f ) can be computed in accordance with nonrela-
tivistic quantum mechanical tenets. These bounds have been
previously delineated for both atomic and molecular os-
cillator strengths in Refs. [61,62]. Despite their theoretical
rigor, further analyses have revealed that the bounds calcu-
lated using this approach may not accurately reflect the true
precision of the calculated oscillator strengths (for more in-
formation see Refs. [62,63]). For instance, 7.834 988 × 10−2

and 7.903 273 × 10−2 values are estimated as a lower bound
and upper bound for the 2 2P→3 2S transition of ∞B, re-
spectively. In comparison with the calculated values using the
ECG method (7.869 252 × 10−2), these have a significantly
broader error bar (± 3.4 × 10−4) than those obtained from
the extrapolation (± 1.3 × 10−6). We conclude that the uncer-
tainty values derived from the upper-lower bounds approach
do not tighten the estimated uncertainty ranges. Thus, in our
calculations, they do not have any practical value.

In Tables VI and VII, we show the calculated values of the
transition matrix elements and the oscillator strengths of the
S → P and P → S transitions for the 10B and 11B isotopes,
and for the boron atom with an infinite nuclear mass (∞B).
The oscillator strengths are calculated for all states consid-
ered in this work. In the two tables, only the extrapolated
values obtained from the calculated oscillator strengths using
10 000–16 000 ECGs are shown. The uncertainties shown in
Table VI are due to the basis-set truncation error. The uncer-
tainties shown in Table VII are calculated as the root mean
squares of the uncertainties of |μi f |2 and �E . The oscillator
strengths are compared with the available literature results.

In general, the agreement between the oscillator strengths
calculated in this work and the available literature values cor-
relates well with the accuracy of the method used to generate
the wave functions. This work not only provides benchmark
values for the oscillator strengths, but reports them for a con-
siderably wider range of the S-P transitions compared to the
previous computational studies. Moreover, we compute the
transition dipole moments and the corresponding oscillator
strengths for the two isotopes of boron. The obtained oscilla-
tor strengths revealed that, while for some of the excited states
more accurate wave functions are needed to more clearly dis-
tinguish the isotopes, for the rest of the states the results seem
reliable enough to make the distinction. It should be noted
that while up to this point experimental measurements have
not been precise enough to discriminate between the oscillator
strengths of the two boron isotopes, this may become feasible
in the future.

The oscillator strengths for all transitions considered in this
work are shown graphically in logarithmic scale in Figs. 1(a)
and 1(b) for 11B in the length and velocity gauges, re-
spectively. Both the tabulated oscillator strengths and their
depiction show that for 10B and 11B isotopes, as well as ∞B,
the largest values of the strengths correspond to transitions
between S and P states with the same principal quantum
number, i.e., the 2s2 n p → 2s2 n s and 2s2 n s → 2s2 n p tran-
sitions. It is worth mentioning that the calculated oscillator
strengths for the n 2P → (n + 1) 2S transitions have compara-
ble values as those for the transitions between two states with
same principal quantum number. This indicates a possibility
to use a P → S → P → S . . . “cascade” excitation sequence
to prepare a boron atom in a particular Rydberg state.
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TABLE VI. The squares of the absorption transition dipole matrix elements, in the length (|μL
i f |2) and velocity forms (|μV

i f |2) for the
transitions involving 2S and 2P states. The numbers in parentheses are estimated uncertainties due to the basis truncation. In those instances
where the uncertainty exceeds the reported value [e.g., a(b) ≡ a+b

−b with b > a], which would make the lower bound to be a negative number,
the lower bound should be assumed to be zero (i.e., a+b

−a). All values are in atomic units.

Transition |μL
i f |2(10B) |μL

i f |2(11B) |μL
i f |2(∞B) |μV

i f |2(10B) |μV
i f |2(11B) |μV

i f |2(∞B)

2 2P → 3 2S 3.881 115(58) 3.881 129(58) 3.881 259(58) 1.292 427 9(70) × 10−1 1.292 420 9(70) × 10−1 1.292 363 5(70) × 10−1

2 2P → 4 2S 5.907 99(73) × 10−1 5.907 80(73) × 10−1 5.905 88(73) × 10−1 3.712 293(40) × 10−2 3.712 162(40) × 10−2 3.710 840(40) × 10−2

2 2P → 5 2S 3.624 83(39) × 10−1 3.624 33(39) × 10−1 3.619 39(39) × 10−1 2.722 98(42) × 10−2 2.722 60(42) × 10−2 2.718 84(42) × 10−2

2 2P → 6 2S 5.316 8(12) × 10−1 5.314 4(12) × 10−1 5.291 9(12) × 10−1 4.309 43(93) × 10−2 4.307 59(93) × 10−2 4.289 18(93) × 10−2

2 2P → 7 2S 1.187 87(62) 1.187 98(62) 1.188 90(62) 9.957 5(95) × 10−2 9.958 2(95) × 10−2 9.962 4(95) × 10−2

2 2P → 8 2S 3.882 6(21) × 10−1 3.888 9(21) × 10−1 3.951 9(21) × 10−1 3.317 9(12) × 10−2 3.323 2(12) × 10−2 3.377 0(12) × 10−2

2 2P → 9 2S 4.736 9(49) × 10−2 4.745 1(49) × 10−2 4.828 5(49) × 10−2 4.128 5(42) × 10−3 4.135 6(42) × 10−3 4.207 8(42) × 10−3

2 2P → 10 2S 1.029 9(80) × 10−2 1.031 8(80) × 10−2 1.051 3(80) × 10−2 9.106(70) × 10−4 9.123(70) × 10−4 9.294(70) × 10−4

2 2P → 11 2S 3.29(10) × 10−3 3.29(10) × 10−3 3.37(10) × 10−3 2.932(95) × 10−4 2.938(95) × 10−4 3.002(95) × 10−4

2 2P → 12 2S 1.358(56) × 10−3 1.361(56) × 10−3 1.395(56) × 10−3 1.217(47) × 10−4 1.219(47) × 10−4 1.249(47) × 10−4

3 2S → 3 2P 8.081 817 0(54) × 101 8.081 728 1(54) × 101 8.080 833 6(54) × 101 1.232 132(15) × 10−1 1.232 139(14) × 10−1 1.232 213(17) × 10−1

3 2S → 4 2P 9.573 9(37) × 10−2 9.575 3(37) × 10−2 9.589 6(37) × 10−2 6.255 9(10) × 10−4 6.256 9(10) × 10−4 6.267 3(10) × 10−4

3 2S → 5 2P 3.70(15) × 10−5 3.68(15) × 10−5 3.48(15) × 10−5 3.362(30) × 10−7 3.344(30) × 10−7 3.165(30) × 10−7

3 2S → 6 2P 2.597 3(78) × 10−3 2.596 0(78) × 10−3 2.583 8(78) × 10−3 2.897 3(22) × 10−5 2.896 1(22) × 10−5 2.883 7(20) × 10−5

3 2S → 7 2P 3.088 9(76) × 10−3 3.087 8(76) × 10−3 3.077 1(76) × 10−3 3.775(10) × 10−5 3.774(10) × 10−5 3.762(10) × 10−5

3 2S → 8 2P 2.682(17) × 10−3 2.682(17) × 10−3 2.673(17) × 10−3 3.462(20) × 10−5 3.461(20) × 10−5 3.452(20) × 10−5

3 2S → 9 2P 2.136(11) × 10−3 2.135(11) × 10−3 2.128(11) × 10−3 2.856(10) × 10−5 2.855(10) × 10−5 2.847(10) × 10−5

3 2S → 10 2P 1.679(10) × 10−3 1.678(10) × 10−3 1.674(10) × 10−3 2.299 0(40) × 10−5 2.298 5(40) × 10−5 2.293 0(40) × 10−5

3 2P → 4 2S 6.219 354(11) × 101 6.219 390(11) × 101 6.219 510(11) × 101 5.286 234(60) × 10−2 5.286 252(60) × 10−2 5.286 418(60) × 10−2

3 2P → 5 2S 3.501 90(78) 3.501 89(78) 3.501 87(78) 9.666 72(50) × 10−3 9.666 77(50) × 10−3 9.667 22(50) × 10−3

3 2P → 6 2S 8.411 5(88) × 10−1 8.412 7(88) × 10−1 8.425 6(88) × 10−1 3.361 4(11) × 10−3 3.361 9(11) × 10−3 3.367 4(13) × 10−3

3 2P → 7 2S 3.474(17) × 10−2 3.490(17) × 10−2 3.652(17) × 10−2 1.604 8(60) × 10−4 1.612 2(50) × 10−4 1.689 6(60) × 10−4

3 2P → 8 2S 1.844 9(50) × 10−1 1.843 2(50) × 10−1 1.826 6(50) × 10−1 9.250(18) × 10−4 9.242(19) × 10−4 9.162(20) × 10−4

3 2P → 9 2S 1.917 3(71) × 10−1 1.917 2(71) × 10−1 1.915 8(71) × 10−1 1.042 3(38) × 10−3 1.042 3(39) × 10−3 1.041 8(40) × 10−3

3 2P → 10 2S 1.293(13) × 10−1 1.293(13) × 10−1 1.292(13) × 10−1 7.445(79) × 10−4 7.445(79) × 10−4 7.444(79) × 10−4

3 2P → 11 2S 8.72(38) × 10−2 8.72(38) × 10−2 8.72(38) × 10−2 5.21(25) × 10−4 5.21(25) × 10−4 5.21(25) × 10−4

3 2P → 12 2S 6.27(38) × 10−2 6.27(38) × 10−2 6.26(38) × 10−2 3.83(28) × 10−4 3.83(28) × 10−4 3.83(28) × 10−4

4 2S → 4 2P 3.643 985 4(59) × 102 3.643 947 2(60) × 102 3.643 563 6(61) × 102 5.830 72(14) × 10−2 5.830 72(14) × 10−2 5.830 68(17) × 10−2

4 2S → 5 2P 1.681 16(66) 1.68124(67) 1.682 03(74) 1.439 47(30) × 10−3 1.439 52(30) × 10−3 1.440 10(30) × 10−3

4 2S → 6 2P 1.395 0(41) × 101 1.395 2(41) × 101 1.396 8(41) × 101 1.979 2(10) × 10−4 1.979 3(10) × 10−4 1.981 1(10) × 10−4

4 2S → 7 2P 2.561 0(74) × 10−2 2.562 0(68) × 10−2 2.566 1(72) × 10−2 4.595(10) × 10−5 4.595(10) × 10−5 4.602(10) × 10−5

4 2S → 8 2P 6.880(52) × 10−3 6.881(52) × 10−3 6.899(52) × 10−3 1.399(10) × 10−5 1.398(10) × 10−5 1.402(10) × 10−5

4 2S → 9 2P 2.420(25) × 10−3 2.421(24) × 10−3 2.430(23) × 10−3 5.35(10) × 10−6 5.34(10) × 10−6 5.36(10) × 10−6

4 2S → 10 2P 9.97(35) × 10−4 9.96(36) × 10−4 1.00(37) × 10−3 2.22(20) × 10−6 2.22(20) × 10−6 2.23(20) × 10−6

4 2P → 5 2S 2.785 007(41) × 102 2.784 997(41) × 102 2.784 892(42) × 102 3.215 865(50) × 10−2 3.215 876(50) × 10−2 3.216 089(50) × 10−2

4 2P → 6 2S 9.730 1(83) 9.732 1(84) 9.751 4(87) 4.438 7(16) × 10−3 4.439 6(16) × 10−3 4.449 8(16) × 10−3

4 2P → 7 2S 3.13(17) × 10−3 3.28(17) × 10−3 4.97(19) × 10−3 2.19(10) × 10−6 2.29(10) × 10−6 3.44(10) × 10−6

4 2P → 8 2S 2.183 88(86) 2.182 71(84) 2.170 5(10) 1.829 4(33) × 10−3 1.828 5(34) × 10−3 1.819 4(43) × 10−3

4 2P → 9 2S 1.454 1(47) 1.454 2(47) 1.454 5(49) 1.482 1(56) × 10−3 1.482 2(56) × 10−3 1.482 9(57) × 10−3

4 2P → 10 2S 8.151(88) × 10−1 8.151(88) × 10−1 8.154(88) × 10−1 9.48(10) × 10−4 9.48(10) × 10−4 9.48(10) × 10−4

4 2P → 11 2S 4.94(24) × 10−1 4.94(24) × 10−1 4.94(24) × 10−1 6.24(33) × 10−4 6.24(33) × 10−4 6.24(33) × 10−4

4 2P → 12 2S 3.31(20) × 10−1 3.31(20) × 10−1 3.31(20) × 10−1 4.44(32) × 10−4 4.44(32) × 10−4 4.44(32) × 10−4

5 2S → 5 2P 9.958 35(81) × 102 9.958 42(80) × 102 9.959 02(80) × 102 3.439 52(14) × 10−2 3.439 48(13) × 10−2 3.438 97(13) × 10−2

5 2S → 6 2P 8.191 1(78) 8.191 4(75) 8.190 3(81) 1.650 18(40) × 10−3 1.650 13(40) × 10−3 1.649 33(40) × 10−3

5 2S → 7 2P 1.061 6(44) 1.061 5(44) 1.060 9(40) 3.818 9(40) × 10−4 3.818 7(40) × 10−4 3.816 3(40) × 10−4

5 2S → 8 2P 2.930 4(78) × 10−1 2.930 3(81) × 10−1 2.926 7(82) × 10−1 1.422 4(70) × 10−4 1.422 3(70) × 10−4 1.421 1(60) × 10−4

5 2S → 9 2P 1.189 7(93) × 10−1 1.189 6(94) × 10−1 1.187 7(93) × 10−1 6.903(30) × 10−5 6.902(30) × 10−5 6.898(20) × 10−5

5 2S → 10 2P 5.997(43) × 10−2 5.996(43) × 10−2 5.986(43) × 10−2 3.878(70) × 10−5 3.878(70) × 10−5 3.874(70) × 10−5

5 2P → 6 2S 8.540 99(35) × 102 8.540 94(35) × 102 8.540 39(34) × 102 1.922 20(30) × 10−2 1.922 44(28) × 10−2 1.924 54(32) × 10−2

5 2P → 7 2S 4.32(14) × 10−2 4.11(14) × 10−2 2.33(14) × 10−2 4.00(10) × 10−6 3.82(10) × 10−6 2.20(10) × 10−6

5 2P → 8 2S 2.082 4(53) × 101 2.081 4(50) × 101 2.068 0(53) × 101 3.168 2(72) × 10−3 3.167 2(69) × 10−3 3.152 4(75) × 10−3

5 2P → 9 2S 8.860(91) 8.860(91) 8.862(92) 2.068 3(73) × 10−3 2.068 4(73) × 10−3 2.069 4(74) × 10−3

5 2P → 10 2S 3.941(29) 3.941(29) 3.942(29) 1.191 0(92) × 10−3 1.191 0(92) × 10−3 1.191 5(92) × 10−3

5 2P → 11 2S 2.074(76) 2.074(76) 2.074(76) 7.32(41) × 10−4 7.32(41) × 10−4 7.32(41) × 10−4

5 2P → 12 2S 1.264(51) 1.264(51) 1.264(51) 4.95(42) × 10−4 4.95(42) × 10−4 4.95(42) × 10−4
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TABLE VI. (Continued.)

Transition |μL
i f |2(10B) |μL

i f |2(11B) |μL
i f |2(∞B) |μV

i f |2(10B) |μV
i f |2(11B) |μV

i f |2(∞B)

6 2S → 6 2P 1.803 99(40) × 103 1.804 27(38) × 103 1.806 97(35) × 103 2.315 75(21) × 10−2 2.315 79(20) × 10−2 2.316 05(16) × 10−2

6 2S → 7 2P 3.261(16) × 101 3.260(16) × 101 3.253(17) × 101 2.275 2(17) × 10−3 2.274 8(18) × 10−3 2.270 7(18) × 10−3

6 2S → 8 2P 5.853(37) 5.852(37) 5.843(37) 7.519(27) × 10−4 7.517(27) × 10−4 7.497(30) × 10−4

6 2S → 9 2P 2.016(18) 2.016(18) 2.012(17) 3.610(16) × 10−4 3.609(16) × 10−4 3.598(16) × 10−4

6 2S → 10 2P 9.651(94) × 10−1 9.649(94) × 10−1 9.628(91) × 10−1 2.078(21) × 10−4 2.077(21) × 10−4 2.068(23) × 10−4

6 2P → 7 2S 1.893 40(99) × 103 1.893 3(12) × 103 1.890 9(17) × 103 2.913 6(29) × 10−3 2.919 0(30) × 10−3 2.972 9(36) × 10−3

6 2P → 8 2S 5.085(14) × 102 5.079(14) × 102 5.020(13) × 102 8.177 5(47) × 10−3 8.171 6(49) × 10−3 8.113 4(53) × 10−3

6 2P → 9 2S 7.053(91) × 101 7.053(91) × 101 7.053(91) × 101 3.433(15) × 10−3 3.433(15) × 10−3 3.434(15) × 10−3

6 2P → 10 2S 1.974(40) × 101 1.974(40) × 101 1.975(40) × 101 1.633(14) × 10−3 1.633(14) × 10−3 1.633(14) × 10−3

6 2P → 11 2S 8.30(25) 8.30(25) 8.30(24) 9.21(42) × 10−4 9.21(42) × 10−4 9.21(42) × 10−4

6 2P → 12 2S 4.58(13) 4.57(13) 4.58(14) 5.83(44) × 10−4 5.83(44) × 10−4 5.83(44) × 10−4

7 2S → 7 2P 7.919(11) × 102 7.925(10) × 102 8.000(13) × 102 9.858(16) × 10−3 9.863(17) × 10−3 9.913(16) × 10−3

7 2S → 8 2P 6.671(23) × 101 6.671(24) × 101 6.672(27) × 101 2.814 48(60) × 10−3 2.815 58(50) × 10−3 2.825 91(60) × 10−3

7 2S → 9 2P 1.889(12) × 101 1.889(12) × 101 1.895(12) × 101 1.356 7(44) × 10−3 1.357 2(44) × 10−3 1.362 7(46) × 10−3

7 2S → 10 2P 8.352(44) 8.355(44) 8.390(50) 8.001(75) × 10−4 8.006(73) × 10−4 8.037(74) × 10−4

7 2P → 9 2S 2.148(12) × 103 2.148(12) × 103 2.143(11) × 103 1.033 00(17) × 10−2 1.032 90(16) × 10−2 1.031 84(17) × 10−2

7 2P → 10 2S 1.420(56) × 102 1.420(56) × 102 1.420(56) × 102 2.742(35) × 10−3 2.742(35) × 10−3 2.741(35) × 10−3

7 2P → 11 2S 3.64(35) × 101 3.64(35) × 101 3.64(35) × 101 1.278(62) × 10−3 1.278(62) × 10−3 1.278(62) × 10−3

7 2P → 12 2S 1.622(22) × 101 1.622(22) × 101 1.621(22) × 101 7.49(39) × 10−4 7.55(32) × 10−4 7.55(32) × 10−4

8 2S → 7 2P 5.359 8(67) × 103 5.358 2(65) × 103 5.340 2(53) × 103 3.046 5(35) × 10−3 3.042 0(34) × 10−3 2.998 8(31) × 10−3

8 2S → 8 2P 5.067(63) × 101 5.069(65) × 101 5.120(62) × 101 7.171(89) × 10−4 7.182(91) × 10−4 7.29(11) × 10−4

8 2S → 9 2P 1.379(70) × 101 1.379(70) × 101 1.380(70) × 101 4.646(51) × 10−4 4.651(51) × 10−4 4.702(54) × 10−4

8 2S → 10 2P 5.98(14) 5.98(14) 6.00(14) 3.049 1(30) × 10−4 3.052 4(30) × 10−4 3.084 7(40) × 10−4

8 2P → 10 2S 4.371(25) × 103 4.370(25) × 103 4.366(24) × 103 8.765(47) × 10−3 8.765(47) × 10−3 8.759(47) × 10−3

8 2P → 11 2S 2.27(54) × 102 2.27(54) × 102 2.27(54) × 102 2.18(14) × 10−3 2.18(14) × 10−3 2.18(13) × 10−3

8 2P → 12 2S 7.09(43) × 101 7.09(43) × 101 7.09(43) × 101 1.068(55) × 10−3 1.068(54) × 10−3 1.067(54) × 10−3

9 2S → 8 2P 1.032 3(53) × 104 1.032 3(53) × 104 1.031 9(53) × 104 6.435(34) × 10−3 6.433(34) × 10−3 6.417(34) × 10−3

9 2S → 9 2P 4.8(27) × 10−1 4.8(27) × 10−1 4.4(25) × 10−1 5.5(60) × 10−7 5.5(60) × 10−7 3.5(70) × 10−7

9 2S → 10 2P 2.9(47) × 10−1 3.0(47) × 10−1 3.0(47) × 10−1 1.28(30) × 10−5 1.30(32) × 10−5 1.33(33) × 10−5

9 2P → 11 2S 7.83(49) × 103 7.83(49) × 103 7.83(49) × 103 7.146(47) × 10−3 7.143(44) × 10−3 7.140(46) × 10−3

9 2P → 12 2S 3.9(13) × 102 3.9(13) × 102 3.9(12) × 102 1.72(23) × 10−3 1.72(23) × 10−3 1.72(23) × 10−3

10 2S → 9 2P 1.692(35) × 104 1.687(40) × 104 1.687(40) × 104 5.91(10) × 10−3 5.91(10) × 10−3 5.90(10) × 10−3

10 2S → 10 2P 2.00(82) × 101 2.00(82) × 101 1.98(81) × 101 4.5(21) × 10−5 4.5(21) × 10−5 4.5(21) × 10−5

10 2P → 12 2S 1.38(20) × 104 1.38(20) × 104 1.38(20) × 104 6.20(52) × 10−3 6.20(52) × 10−3 6.19(52) × 10−3

11 2S → 10 2P 2.56(23) × 104 2.56(23) × 104 2.56(23) × 104 5.07(36) × 10−3 5.07(36) × 10−3 5.06(36) × 10−3

One can also observe two dark spots in Figs. 1(a) and 1(b)
that correspond to the 4 2P → 7 2S and 5 2P → 3 2S transi-
tions. The last one corresponds to the smallest calculated value
(∼3 × 10−5 or ∼3 × 10−7, depending on the gauge used)
among all f values found in Table VII. Because these values
have such small magnitudes, their relative uncertainties are
large. Yet, because the data are consistent across the gauges
(L and V ) we strongly believe that the exact oscillator strength
for for both 4 2P → 7 2S and 5 2P → 3 2S transitions is in-
deed very small.

In Figs. 1(c) and 1(d), the relative isotopic shifts of the
oscillator strengths (RIS of f ) are shown for all studied transi-
tions. They are calculated in the length and velocity gauges as
[ f (10B) − f (11B)]/ f (11B). The plots show that, as expected,
the oscillator strengths are almost identical for the two boron
isotopes, with some exceptions.

Table VIII shows all transitions for which the absolute
values of the RIS are larger than 2.5 × 10−3. One can see
that the largest RIS values correspond to the 4 2P → 7 2S and
5 2P → 7 2S transitions. Both of these values are close to 5%
and there is a reasonably good agreement (within estimated

uncertainties) between the values computed in the length and
velocity gauge, which gives confidence that this is not merely
a numerical artifact. Such a significant magnitude of the RIS
makes it potentially detectable in future experiments with
different boron isotopes.

It should be noted that the estimated uncertainties for the
RIS values given in Table VIII are considerably smaller than
the root-mean-square errors in which the uncertainties in f
values for the two isotopes are uncorrelated. This is because
the errors in the oscillator strength are correlated in our cal-
culations, where we use the same ECG basis sets for the same
states of different isotopes. Thus, when estimating the uncer-
tainties of the RIS we looked specifically at the convergence
patterns of this quantity as we increased the basis size.

The higher sensitivity (in relative terms) of the 4 2P →
7 2S and 5 2P → 7 2S transition to the isotopic substitution
may be related to two facts. First, the oscillator strengths
themselves for these transitions are rather small [hence, the
dark spots in Figs. 1(a) and 1(b)]. Second, as it was previously
mentioned, there is an admixture in the configuration com-
position of the 7 2S state. Apparently, the transition matrix
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TABLE VII. Nonrelativistic absorption oscillator strengths obtained using the length ( f L
i f ) and velocity ( f V

i f ) formalisms for the transitions
involving 2S and 2P states of the boron atom. The oscillator strength uncertainties (numbers in parentheses) are calculated as the root mean
squares of the uncertainties of |μL

i f |2 or |μV
i f |2 and �E , where �E is the difference between the nonrelativistic total energies of the initial (i)

and final ( f ) states.

Transition f L
i f (10B) f V

i f (10B) f L
i f (10B) f V

i f (10B) f L
i f (∞B) f V

i f (∞B)

2 2P → 3 2S 7.869 32(12) × 10−2 7.869 377(42) × 10−2 7.869 32(12) × 10−2 7.869 368(42) × 10−2 7.869 25(12) × 10−2 7.869 350(42) × 10−2

2 2P → 3 2S Ref. [42] 7.83(23) × 10−2

2 2P → 3 2S Ref. [51] 8.03 × 10−2 7.95 × 10−2

2 2P → 3 2S Ref. [52] 7.87 × 10−2 7.61 × 10−2

2 2P → 4 2S 1.645 59(20) × 10−2 1.645 411(20) × 10−2 1.645 54(20) × 10−2 1.645 355(20) × 10−2 1.644 98(20) × 10−2 1.644 793(20) × 10−2

2 2P → 4 2S Ref. [42] 1.54(15) × 10−2

2 2P → 4 2S Ref. [51] 1.62 × 10−2 1.65 × 10−2

2 2P → 4 2S Ref. [52] 1.63 × 10−2 1.57 × 10−2

2 2P → 5 2S 1.103 88(12) × 10−2 1.103 89(17) × 10−2 1.103 72(12) × 10−2 1.103 74(17) × 10−2 1.102 21(12) × 10−2 1.102 22(17) × 10−2

2 2P → 5 2S Ref. [42] 8.2(2 1) × 10−3

2 2P → 5 2S Ref. [51] 1.17 × 10−2 1.22 × 10−2

2 2P → 5 2S Ref. [52] 1.06 × 10−2 1.02 × 10−2

2 2P → 6 2S 1.681 87(38) × 10−2 1.681 86(36) × 10−2 1.681 13(38) × 10−2 1.681 15(36) × 10−2 1.674 00(38) × 10−2 1.673 96(36) × 10−2

2 2P → 6 2S Ref. [42] 1.08(54) × 10−2

2 2P → 6 2S Ref. [52] 1.48 × 10−2 1.43 × 10−2

2 2P → 7 2S 3.821 3(20) × 10−2 3.821 5(37) × 10−2 3.821 6(20) × 10−2 3.821 7(37) × 10−2 3.824 8(20) × 10−2 3.823 1(37) × 10−2

2 2P → 7 2S Ref. [42] 1.64(41) × 10−2

2 2P → 7 2S Ref. [52] 3.53 × 10−2 3.41 × 10−2

2 2P → 8 2S 1.260 97(70) × 10−2 1.261 23(47) × 10−2 1.263 00(70) × 10−2 1.263 25(47) × 10−2 1.283 49(70) × 10−2 1.283 67(47) × 10−2

2 2P → 8 2S Ref. [42] 7.4(1 9) × 10−3

2 2P → 8 2S Ref. [52] 1.78 × 10−2 1.72 × 10−2

2 2P → 9 2S 1.553 9(16) × 10−3 1.553 7(16) × 10−3 1.556 6(16) × 10−3 1.556 4(16) × 10−3 1.583 9(16) × 10−3 1.583 6(16) × 10−3

2 2P → 9 2S Ref. [42] 1.00(25) × 10−2

2 2P → 9 2S Ref. [52] 2.38 × 10−3 2.3 × 10−3

2 2P → 10 2S 3.404 (27) × 10−4 3.402 (26) × 10−4 3.410 (27) × 10−4 3.408 (26) × 10−4 3.474 (27) × 10−4 3.472 (26) × 10−4

2 2P → 11 2S 1.091 (35) × 10−4 1.090 (35) × 10−4 1.094 (35) × 10−4 1.092 (35) × 10−4 1.119 (35) × 10−4 1.116 (35) × 10−4

2 2P → 12 2S 4.53(19) × 10−5 4.51(17) × 10−5 4.54(19) × 10−5 4.52(17) × 10−5 4.65(19) × 10−5 4.63(17) × 10−5

3 2S → 3 2P 1.051 8577(26) 1.051 882(13) 1.051 8573(26) 1.051 876(13) 1.051 8536(26) 1.051 827(15)

3 2S → 3 2P Ref. [42] 1.05(11)

3 2S → 3 2P Ref. [51] 1.07 1.08

3 2S → 3 2P Ref. [52] 1.05 1.04

3 2S → 4 2P 2.580 1(10) × 10−3 2.579 25(45) × 10−3 2.580 5(10) × 10−3 2.579 66(45) × 10−3 2.584 5(10) × 10−3 2.583 76(45) × 10−3

3 2S → 4 2P Ref. [42] 3.21(80) × 10−3

3 2S → 4 2P Ref. [52] 2.67 × 10−3 2.52 × 10−3

3 2S → 5 2P 1.202 (50) × 10−6 1.150 (10) × 10−6 1.196 (50) × 10−6 1.143 (10) × 10−6 1.132 (50) × 10−6 1.083 (10) × 10−6

3 2S → 6 2P 9.160 (27) × 10−5 9.128 4(70) × 10−5 9.155 (27) × 10−5 9.124 4(70) × 10−5 9.113 (27) × 10−5 9.085 0(60) × 10−5

3 2S → 7 2P 1.138 4(28) × 10−4 1.138 1(19) × 10−4 1.138 0(28) × 10−4 1.137 7(19) × 10−4 1.134 1(28) × 10−4 1.134 1(19) × 10−4

3 2S → 8 2P 1.015 2(65) × 10−4 1.016 4(67) × 10−4 1.014 9(65) × 10−4 1.016 1(67) × 10−4 1.011 9(65) × 10−4 1.013 4(67) × 10−4

3 2S → 9 2P 8.224 (44) × 10−5 8.240 (25) × 10−5 8.222 (44) × 10−5 8.237 (25) × 10−5 8.196 (44) × 10−5 8.214 (25) × 10−5

3 2S → 10 2P 6.544 (39) × 10−5 6.554 (11) × 10−5 6.542 (39) × 10−5 6.553 (11) × 10−5 6.524 (39) × 10−5 6.537 (12) × 10−5

3 2P → 4 2S 2.014 6878(43) × 10−1 2.014 646(23) × 10−1 2.014 6987(43) × 10−1 2.014 654(23) × 10−1 2.014 7281(43) × 10−1 2.014 727(23) × 10−1

3 2P → 4 2S Ref. [42] 2.03(20) × 10−1

3 2P → 4 2S Ref. [51] 2.04 × 10−1 2.06 × 10−1

3 2P → 4 2S Ref. [52] 2.02 × 10−1 2.00 × 10−1

3 2P → 5 2S 2.044 71(45) × 10−2 2.043 93(10) × 10−2 2.044 71(45) × 10−2 2.043 94(10) × 10−2 2.044 76(45) × 10−2 2.043 969(99) × 10−2

3 2P → 5 2S Ref. [42] 2.07(21) × 10−2

3 2P → 5 2S Ref. [52] 2.05 × 10−2 2.03 × 10−2

3 2P → 6 2S 5.904 0(62) × 10−3 5.912 4(20) × 10−3 5.904 9(62) × 10−3 5.913 3(20) × 10−3 5.914 4(62) × 10−3 5.922 5(23) × 10−3

3 2P → 6 2S Ref. [42] 6.7(1 7) × 10−3

3 2P → 6 2S Ref. [52] 6.14 × 10−3 6.14 × 10−3

3 2P → 7 2S 2.624 (13) × 10−4 2.622 5(92) × 10−4 2.636 (13) × 10−4 2.634 5(89) × 10−4 2.760 (13) × 10−4 2.760 4(97) × 10−4

3 2P → 8 2S 1.450 6(39) × 10−3 1.452 5(29) × 10−3 1.449 2(39) × 10−3 1.451 1(30) × 10−3 1.436 4(39) × 10−3 1.438 4(32) × 10−3

3 2P → 8 2S Ref. [42] 3.22(81) × 10−3

3 2P → 8 2S Ref. [52] 6.78 × 10−4 6.29 × 10−4

3 2P → 9 2S 1.570 2(58) × 10−3 1.571 2(58) × 10−3 1.570 1(58) × 10−3 1.571 2(58) × 10−3 1.569 0(58) × 10−3 1.570 4(60) × 10−3
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TABLE VII. (Continued.)

Transition f L
i f (10B) f V

i f (10B) f L
i f (10B) f V

i f (10B) f L
i f (∞B) f V

i f (∞B)

3 2P → 9 2S Ref. [42] 1.57(39) × 10−3

3 2P → 9 2S Ref. [52] 9.57 × 10−4 8.76 × 10−4

3 2P → 10 2S 1.091 (11) × 10−3 1.090 (12) × 10−3 1.091 (11) × 10−3 1.090 (12) × 10−3 1.090 (11) × 10−3 1.090 (12) × 10−3

3 2P → 10 2S Ref. [52] 1.48 × 10−3 1.42 × 10−3

3 2P → 11 2S 7.50(33) × 10−4 7.48(36) × 10−4 7.50(33) × 10−4 7.48(36) × 10−4 7.50(33) × 10−4 7.48(36) × 10−4

3 2P → 12 2S 5.47(33) × 10−4 5.42(39) × 10−4 5.47(33) × 10−4 5.42(39) × 10−4 5.46(33) × 10−4 5.42(39) × 10−4

4 2S → 4 2P 1.536 453(12) 1.536 517(39) 1.536 451(12) 1.536 501(39) 1.536 436(12) 1.536 344(45)

4 2S → 4 2P Ref. [42] 1.55(16)

4 2S → 5 2P 1.640 32(64) × 10−2 1.639 23(32) × 10−2 1.640 41(65) × 10−2 1.639 27(32) × 10−2 1.641 28(72) × 10−2 1.639 84(30) × 10−2

4 2S → 6 2P 1.748 3(52) × 10−3 1.754 71(77) × 10−3 1.748 6(52) × 10−3 1.754 78(85) × 10−3 1.750 7(52) × 10−3 1.756 25(86) × 10−3

4 2S → 7 2P 3.617 (10) × 10−4 3.615 0(99) × 10−4 3.618 1(96) × 10−4 3.615 5(98) × 10−4 3.624 (10) × 10−4 3.620 5(95) × 10−4

4 2S → 8 2P 1.039 8(79) × 10−4 1.028 3(79) × 10−4 1.040 1(79) × 10−4 1.028 1(83) × 10−4 1.042 8(78) × 10−4 1.030 3(84) × 10−4

4 2S → 9 2P 3.818 (39) × 10−5 3.767 (46) × 10−5 3.820 (38) × 10−5 3.758 (57) × 10−5 3.834 (36) × 10−5 3.774 (50) × 10−5

4 2S → 10 2P 1.619 (58) × 10−5 1.52(12) × 10−5 1.618 (59) × 10−5 1.52(12) × 10−5 1.624 (60) × 10−5 1.53(11) × 10−5

4 2P → 5 2S 3.325 289(73) × 10−1 3.325 138(73) × 10−1 3.325 295(73) × 10−1 3.325 131(73) × 10−1 3.325 350(74) × 10−1 3.325 171(74) × 10−1

4 2P → 5 2S Ref. [42] 3.35(34) × 10−1

4 2P → 5 2S Ref. [52] 3.33 × 10−1 3.32 × 10−1

4 2P → 6 2S 2.310 0(20) × 10−2 2.308 22(82) × 10−2 2.310 5(20) × 10−2 2.308 68(85) × 10−2 2.315 5(21) × 10−2 2.313 57(82) × 10−2

4 2P → 6 2S Ref. [42] 2.77(28) × 10−2

4 2P → 6 2S Ref. [52] 2.44 × 10−2 2.44 × 10−2

4 2P → 7 2S 9.11(50) × 10−6 9.29(37) × 10−6 9.55(51) × 10−6 9.71(36) × 10−6 1.446 (56) × 10−5 1.460 (41) × 10−5

4 2P → 8 2S 7.027 3(32) × 10−3 7.019 (13) × 10−3 7.023 7(32) × 10−3 7.015 (13) × 10−3 6.986 1(36) × 10−3 6.978 (16) × 10−3

4 2P → 8 2S Ref. [42] 8.98(90) × 10−3

4 2P → 8 2S Ref. [52] 5.32 × 10−4 4.85 × 10−4

4 2P → 9 2S 5.155 (17) × 10−3 5.162 (20) × 10−3 5.155 (17) × 10−3 5.162 (20) × 10−3 5.157 (17) × 10−3 5.164 (20) × 10−3

4 2P → 9 2S Ref. [42] 3.03(76) × 10−3

4 2P → 9 2S Ref. [52] 5.36 × 10−3 5.17 × 10−3

4 2P → 10 2S 3.088 (33) × 10−3 3.089 (34) × 10−3 3.088 (33) × 10−3 3.090 (34) × 10−3 3.089 (34) × 10−3 3.091 (34) × 10−3

4 2P → 10 2S Ref. [52] 5.03 × 10−3 4.92 × 10−3

4 2P → 11 2S 1.954 (94) × 10−3 1.95(10) × 10−3 1.954 (94) × 10−3 1.95(10) × 10−3 1.954 (94) × 10−3 1.95(10) × 10−3

4 2P → 12 2S 1.349 (83) × 10−3 1.344 (96) × 10−3 1.349 (83) × 10−3 1.344 (96) × 10−3 1.349 (83) × 10−3 1.344 (96) × 10−3

5 2S → 5 2P 1.950 69(16) 1.950 989(83) 1.950 70(16) 1.950 968(78) 1.950 80(16) 1.950 701(77)

5 2S → 6 2P 3.878 1(37) × 10−2 3.872 74(98) × 10−2 3.878 2(36) × 10−2 3.872 62(93) × 10−2 3.877 7(38) × 10−2 3.870 7(10) × 10−2

5 2S → 7 2P 6.713 (28) × 10−3 6.710 4(72) × 10−3 6.712 (28) × 10−3 6.710 0(70) × 10−3 6.709 (26) × 10−3 6.705 7(64) × 10−3

5 2S → 8 2P 2.143 8(58) × 10−3 2.160 (10) × 10−3 2.143 7(60) × 10−3 2.160 (1) × 10−3 2.141 1(61) × 10−3 2.158 3(96) × 10−3

5 2S → 9 2P 9.494 (75) × 10−4 9.611 (37) × 10−4 9.493 (76) × 10−4 9.610 (37) × 10−4 9.479 (75) × 10−4 9.604 (33) × 10−4

5 2S → 10 2P 5.066 (37) × 10−4 5.101 (88) × 10−4 5.065 (38) × 10−4 5.101 (88) × 10−4 5.056 (38) × 10−4 5.096 (87) × 10−4

5 2P → 6 2S 4.502 37(81) × 10−1 4.501 7(11) × 10−1 4.502 63(81) × 10−1 4.502 0(10) × 10−1 4.505 14(81) × 10−1 4.504 1(11) × 10−1

5 2P → 7 2S 4.59(15) × 10−5 4.648 (94) × 10−5 4.37(15) × 10−5 4.434 (93) × 10−5 2.48(15) × 10−5 2.557 (82) × 10−5

5 2P → 8 2S 2.854 6(75) × 10−2 2.853 3(67) × 10−2 2.853 4(70) × 10−2 2.852 2(64) × 10−2 2.836 6(74) × 10−2 2.837 3(70) × 10−2

5 2P → 9 2S 1.505 (16) × 10−2 1.503 8(55) × 10−2 1.505 (16) × 10−2 1.503 8(55) × 10−2 1.505 (16) × 10−2 1.504 4(56) × 10−2

5 2P → 10 2S 7.651 (58) × 10−3 7.573 (61) × 10−3 7.651 (58) × 10−3 7.573 (61) × 10−3 7.654 (58) × 10−3 7.576 (61) × 10−3

5 2P → 11 2S 4.38(16) × 10−3 4.28(24) × 10−3 4.38(16) × 10−3 4.28(24) × 10−3 4.38(16) × 10−3 4.28(24) × 10−3

5 2P → 12 2S 2.82(12) × 10−3 2.74(23) × 10−3 2.82(12) × 10−3 2.74(23) × 10−3 2.82(12) × 10−3 2.74(23) × 10−3

6 2S → 6 2P 2.154 30(48) 2.154 65(21) 2.154 48(46) 2.154 85(20) 2.156 10(42) 2.156 70(17)

6 2S → 7 2P 9.076 (44) × 10−2 9.083 7(70) × 10−2 9.073 (45) × 10−2 9.082 1(72) × 10−2 9.050 (46) × 10−2 9.068 4(72) × 10−2

6 2S → 8 2P 2.210 (14) × 10−2 2.212 6(82) × 10−2 2.209 (14) × 10−2 2.212 1(82) × 10−2 2.206 (14) × 10−2 2.206 6(89) × 10−2

6 2S → 9 2P 8.951 (81) × 10−3 9.034 (44) × 10−3 8.949 (81) × 10−3 9.032 (44) × 10−3 8.931 (80) × 10−3 9.008 (44) × 10−3

6 2S → 10 2P 4.733 (50) × 10−3 4.708 (52) × 10−3 4.732 (50) × 10−3 4.706 (52) × 10−3 4.721 (49) × 10−3 4.687 (55) × 10−3

6 2P → 7 2S 2.606 7(72) × 10−1 2.612 7(75) × 10−1 2.609 2(72) × 10−1 2.614 9(76) × 10−1 2.632 6(74) × 10−1 2.636 1(77) × 10−1

6 2P → 8 2S 2.266 5(68) × 10−1 2.265 1(34) × 10−1 2.264 3(68) × 10−1 2.263 1(34) × 10−1 2.241 5(68) × 10−1 2.243 3(34) × 10−1

6 2P → 9 2S 5.451 (71) × 10−2 5.483 (27) × 10−2 5.451 (71) × 10−2 5.483 (27) × 10−2 5.453 (71) × 10−2 5.483 (27) × 10−2

6 2P → 10 2S 2.007 (42) × 10−2 1.983 (18) × 10−2 2.007 (41) × 10−2 1.983 (18) × 10−2 2.008 (41) × 10−2 1.983 (18) × 10−2

6 2P → 11 2S 9.85(31) × 10−3 9.58(44) × 10−3 9.85(31) × 10−3 9.58(44) × 10−3 9.85(30) × 10−3 9.58(44) × 10−3

6 2P → 12 2S 5.99(20) × 10−3 5.50(42) × 10−3 5.99(19) × 10−3 5.50(42) × 10−3 5.99(20) × 10−3 5.50(42) × 10−3

7 2S → 7 2P 9.308 (13) × 10−1 9.318 (15) × 10−1 9.312 (12) × 10−1 9.327 (16) × 10−1 9.367 (15) × 10−1 9.407 (15) × 10−1

7 2S → 8 2P 1.446 3(53) × 10−1 1.442 4(19) × 10−1 1.446 0(55) × 10−1 1.443 2(19) × 10−1 1.443 4(62) × 10−1 1.451 3(19) × 10−1

7 2S → 9 2P 5.349 (36) × 10−2 5.323 (22) × 10−2 5.350 (37) × 10−2 5.325 (22) × 10−2 5.358 (37) × 10−2 5.355 (23) × 10−2
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TABLE VII. (Continued.)

Transition f L
i f (10B) f V

i f (10B) f L
i f (10B) f V

i f (10B) f L
i f (∞B) f V

i f (∞B)

7 2S → 10 2P 2.752 (22) × 10−2 2.697 (30) × 10−2 2.753 (22) × 10−2 2.700 (29) × 10−2 2.761 (23) × 10−2 2.713 (30) × 10−2

7 2P → 9 2S 5.227 (41) × 10−1 5.242 (30) × 10−1 5.226 (41) × 10−1 5.241 (30) × 10−1 5.217 (40) × 10−1 5.232 (30) × 10−1

7 2P → 10 2S 6.92(28) × 10−2 6.95(10) × 10−2 6.92(28) × 10−2 6.95(10) × 10−2 6.92(28) × 10−2 6.95(10) × 10−2

7 2P → 11 2S 2.40(23) × 10−2 2.40(12) × 10−2 2.40(23) × 10−2 2.40(12) × 10−2 2.40(23) × 10−2 2.40(12) × 10−2

7 2P → 12 2S 1.259 (41) × 10−2 1.191 (71) × 10−2 1.259 (41) × 10−2 1.201 (63) × 10−2 1.259 (41) × 10−2 1.201 (62) × 10−2

8 2S → 7 2P 1.349 5(70) 1.344 4(70) 1.347 9(70) 1.343 6(70) 1.332 0(69) 1.335 9(70)

8 2S → 8 2P 6.304 (79) × 10−2 6.405 (80) × 10−2 6.306 (81) × 10−2 6.416 (82) × 10−2 6.358 (78) × 10−2 6.524 (96) × 10−2

8 2S → 9 2P 2.63(13) × 10−2 2.705 (31) × 10−2 2.63(13) × 10−2 2.708 (31) × 10−2 2.63(13) × 10−2 2.741 (33) × 10−2

8 2S → 10 2P 1.419 (36) × 10−2 1.428 (11) × 10−2 1.419 (35) × 10−2 1.430 (11) × 10−2 1.422 (35) × 10−2 1.446 (12) × 10−2

8 2P → 10 2S 6.80(14) × 10−1 6.96(14) × 10−1 6.80(14) × 10−1 6.96(14) × 10−1 6.79(14) × 10−1 6.95(14) × 10−1

8 2P → 11 2S 7.4(1 8) × 10−2 8.28(59) × 10−2 7.4(1 8) × 10−2 8.28(59) × 10−2 7.4(1 8) × 10−2 8.28(59) × 10−2

8 2P → 12 2S 3.16(25) × 10−2 2.96(21) × 10−2 3.16(25) × 10−2 2.96(21) × 10−2 3.16(25) × 10−2 2.96(21) × 10−2

9 2S → 8 2P 2.712(19) 2.721(19) 2.712(19) 2.721(19) 2.707(19) 2.719(19)

9 2S → 9 2P 4.5(25) × 10−4 6.6(77) × 10−5 4.4(25) × 10−4 6.6(75) × 10−5 4.1(24) × 10−4 4.2(84) × 10−5

9 2S → 10 2P 4.1(65) × 10−4 1.02(24) × 10−3 4.1(65) × 10−4 1.04(26) × 10−3 4.2(66) × 10−4 1.07(26) × 10−3

9 2P → 11 2S 8.10(91) × 10−1 8.53(80) × 10−1 8.10(91) × 10−1 8.53(79) × 10−1 8.10(90) × 10−1 8.52(79) × 10−1

9 2P → 12 2S 8.7(30) × 10−2 9.5(15) × 10−2 8.7(30) × 10−2 9.5(15) × 10−2 8.8(28) × 10−2 9.4(15) × 10−2

10 2S → 9 2P 3.305(80) 3.363(71) 3.296(87) 3.363(71) 3.293(87) 3.361(71)

10 2S → 10 2P 1.32(54) × 10−2 7.6(35) × 10−3 1.32(54) × 10−2 7.6(35) × 10−3 1.30(53) × 10−2 7.5(35) × 10−3

10 2P → 12 2S 9.2(29) × 10−1 1.14(34) 9.2(29) × 10−1 1.14(34) 9.2(29) × 10−1 1.14(34)

11 2S → 10 2P 3.84(49) 3.75(43) 3.84(49) 3.75(43) 3.84(49) 3.74(43)

FIG. 1. Heat-map plot of the 11B oscillator strengths (a), (b), as well as of the relative isotopic shifts (c), (d) defined as [ f (10B) −
f (11B)]/ f (11B). Plots (a) and (c) on the left side of the figure show the results obtained using the length formalism, while those on the
right side, (b) and (d), correspond to the velocity formalism.
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TABLE VIII. List of transitions for which the magnitude of the
relative isotopic shifts of the oscillator strength in the length (RISL)
and velocity (RISV ) gauges are most significant and exceed the value
of 2.5 × 10−3.

Transition RISL RISV

5 2P → 7 2S 5.08(10) × 10−2 4.805(33) × 10−2

4 2P → 7 2S −4.59(14) × 10−2 −4.498(73) × 10−2

9 2S → 9 2P 1.75(89) × 10−2 1.31(25) × 10−2

3 2S → 5 2P 5.562(61) × 10−3 5.452(46) × 10−3

3 2P → 7 2S −4.552(86) × 10−3 −4.624(63) × 10−3

elements that involve the wave function largely described by
such a configuration are very sensitive to the nuclear mass.
We hope that one day the accuracy of future experimental
data will be sufficient to resolve and confirm this peculiar
behavior.

IV. SUMMARY

In this work, transitions between n 2P (n = 2–10) and
n 2S (n = 3–12) states of the boron atom are studied. In
the framework of the Rayleigh-Ritz variational method and
expanding the wave function of each state with all-particle ex-
plicitly correlated Gaussian basis functions, we perform very
accurate nonrelativistic calculations to determine the total en-
ergies and the corresponding wave functions of the considered
states. The transition energies and the corresponding oscillator

strengths are calculated for the 2P → 2S and 2S → 2P tran-
sitions of the two stable boron isotopes, 10B and 11B, as well
as for ∞B. The calculated oscillator strengths show a certain
pattern with the largest oscillator strength values appearing
for the n 2S → n 2P and n 2P→ (n + 1) 2S transitions (i.e.,
the transitions between adjacent states) and much smaller
values appearing for the other transitions, particularly those
involving states with considerably different total energies.
There is some interesting decrease of the oscillator strength
for the 4 2P → 7 2S and 5 2P → 7 2S transitions that seems
to be related to an anomaly of the configuration composition
of the 7 2S state. Based on the oscillation-strength pattern,
one can envision preparing a boron atom in a particular ex-
cited Rydberg state using an excitation cascade, e.g., 3 2S →
3 2P, 3 2P → 4 2S, . . ..

The data obtained in this work may be employed in mod-
eling of light emission and absorption events involving boron
isotopes in the laboratory and in the interstellar media. Such
models usually require accurate values of the transition ener-
gies and the oscillator strengths which this work provides.
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