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Relativistic corrections in the ground and excited states of positronic beryllium
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Positron binding to neutral atoms, which to this day have not been detected experimentally, is thought to be
rather weak. According to a few reliable nonrelativistic calculations reported previously, the positron affinity for
small atoms, even if it happens to be positive, is predicted to be very small in magnitude, of the order of just
few millihartrees (<0.1 eV). In this work, we used a highly accurate variational expansion in terms of explicitly
correlated Gaussians to investigate how relativistic effects may affect the stability of bound states of positrons
with atoms. We performed calculations of positronic beryllium, e+[Be], in its ground singlet S and excited triplet
S and P states, all of which are bound. According to our findings, neither the inclusion of scalar relativistic nor
spin-dependent corrections alters the predictions regarding the existence of the bound states. When leading-order
relativistic effects are taken into account, positron affinities change only by 2.2% or less. Notably, this is so even
for the triplet P state of positronic beryllium, where the spin-orbit correction is not at all canceled out when the
energy difference with the parent system is computed.
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I. INTRODUCTION

The study of matter and antimatter interaction is of great
importance for understanding the fundamental nature of the
universe and its origins. Simple quantum systems containing
a positron represent, perhaps, the simplest and most tractable
realization of this interaction. In fact, the possibility of a
positron attracting to one or two electrons and forming a
bound state has been considered for a long time. The first
speculation of it can be traced back to the work of Wheeler
on polyelectrons in 1946 [1]. Another and, perhaps, eas-
ier to imagine realization of the positron-electron interaction
comes in the form of a positron attaching itself to an atom
and forming an electronically stable bound state. Despite
the simplicity of such systems, it took half a century for
the theoretical predictions to provide a rigorous proof that
a positron can bind to a neutral atom. The ambiguity was
finally settled when two independent variational calculations
were performed and demonstrated the electronic stability of
the ground state of positronic lithium [2,3]. By now, a num-
ber of theoretical studies established that positron binding by
electrically neutral atoms should be a common phenomenon.
Around a dozen atoms are believed to be capable of binding
a positron [4–19]. Yet, there has been no experimental ev-
idence that demonstrates the existence of simple positronic
atoms. All small bound positronic systems that have been
observed so far either consist of light particles only (Ps−, Ps2)
[20–24] or exhibit the chemical characteristics of positronium

*dm.tumakov@gmail.com
†pavel.rzhevskii@nu.edu.kz
‡toreniyaz.shomenov@nu.edu.kz
§sergiy.bubin@nu.edu.kz

compounds (PsH) [25]. Experimental measurements of the
positron affinities with molecules are performed using the
shifts of vibrational Feshbach resonances (VFRs) [8,26–28].
In the case of positronic atoms there have been some proposals
for experimental detection using the shifts of VFRs [7,8],
laser-assisted photorecombinations [29], or doing it on the
basis of reactions with negative ions [30].

In this article, we study positronic beryllium, e+[Be], a
system in which a positron is attached to the beryllium atom.
Its existence was first predicted in 1998 based on variational
calculations that employed explicitly correlated Gaussians
(ECGs) [5]. Successive theoretical works have confirmed the
existence and enhanced the precision of that first conclu-
sive calculation [6,12,14,31,32]. Furthermore, extrapolating
configuration-interaction (CI) energies of the excited triplet
P state to an infinite basis set limit hinted at possible positron
binding in that state [33]. These predictions were later rig-
orously confirmed in accurate ECG calculations [12]. More
recently, Strasburger carried out variational calculations em-
ploying ECG functions that showed the dynamic stability of
excited triplet S state of positronic beryllium [14]. These cal-
culations demonstrate that positron binding in excited states
may be a rather common phenomenon, despite the fact that
most literature studies so far have dealt with the ground states
of positronic atoms.

The positron binding in both ground and excited states of
atoms, even if it does take place, tends to be rather weak. For
example, for the ground state of positronic lithium it amounts
to just 0.0025 hartree (or 0.068 eV) [34]. For larger atoms
that support positron attachment the magnitude of the binding
energy may increase a little, yet it still remains small. For
example, for the ground state of copper it is estimated at
0.0048–0.0062 hartree (0.13–0.17 eV) [13,16,35]. Not only
does weak binding and cluster-like or halo-like structure [36]
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of positronic atoms pose challenges for reliable and accurate
determination of the binding energy using traditional elec-
tronic structure methods but it also naturally raises a question
of how significant the relativistic effects in such systems
could be. Specifically, one may ask a question of whether
the inclusion of relativistic corrections can alter the dynamic
stability of a weakly bound positron–atom complex. Next,
even if the conclusion about the stability remains unchanged,
it is important to understand how sensitive the binding energy
may be to the shifts and splittings of the energy levels caused
by various relativistic effects as it may be helpful for guiding
experimental measurements. Up to this date, there has been
only a single study where this was investigated more or less
systematically for two alkali-metal atoms (Li and Na) using
an approach that is based on a model potential for a valence
electron [37].

Building upon our earlier work concerning positronic
beryllium [12], in this article we studied three states of this
simple positron-atom complex: the ground singlet S state as
well as the excited triplet S and P states (the multiplicity
here refers to the subsystem of electrons). The 3P state is
particularly interesting since it gives nonzero fine-structure
correction. Moreover, the spin-orbit correction in this state
is not canceled out at all when the binding energy is deter-
mined, as is largely the case for other relativistic corrections,
because the dissociation threshold corresponds to two sub-
systems (Ps and Be+) in S states. For all systems and states
considered in this work we adopted variational expansions of
the wave functions in terms of thousands of thoroughly opti-
mized all-particle explicitly correlated Gaussians. It allowed
us to obtain highly accurate solutions to the few-particle non-
relativistic Schrödinger equation and then use them in the
framework of the Breit–Pauli perturbation theory to study the
significance of the relativistic effects. It should be noted that
the wave functions we used not only accurately describe all
electron-electron and electron-positron correlations, but they
also account for small isotopic effects as the nonrelativistic
Hamiltonian we employed includes nuclear degrees of free-
dom in the same way as those for the electrons and positron.
As a result, we could reliably determine all necessary quanti-
ties at the nonrelativistic level of theory without resorting to
any approximations.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Nonrelativistic Hamiltonian

In this work we deal with several few-particle systems
comprised of particles that have different charges and masses.
We begin with the full nonrelativistic Hamiltonian for an arbi-
trary system of N particles interacting via the Coulomb forces.
Let mi and qi be their masses and charges respectively, while
ri are the Cartesian position vectors (i = 1, . . . , N) in the
laboratory reference frame. In atomic units the Hamiltonian
of such system is then given by

Hlab
NR = −

N∑
i=1

1

2mi
∇2

ri
+

N∑
i=1

N∑
j>i

qiq j

ri j
, (1)

where ∇ri is the gradient with respect to the position of the ith
particle and ri j = |ri − r j | is the distance between particles

i and j. If none of the particles are frozen in space (which
happens when some particles have infinitely heavy masses)
the above nonrelativistic Hamiltonian does not have discrete
spectrum. The bound states are embedded into a continuum
because the system as a whole may have a nonzero linear
momentum. Thus, at the very first step, we must separate out
the free motion of the center of mass. This can be achieved
by a transformation from the 3N laboratory frame coordinates
ri to a set of new coordinates composed of three Cartesian
coordinates of the center of mass and some 3N − 3 internal
coordinates. The choice of the internal coordinates is not
unique. When we deal with systems containing a single heavy
particle (e.g., atomic nucleus), which we may call particle 1
or the reference particle, it is natural to choose a set of in-
ternal coordinates comprised of relative positions of all other
particles with respect to that reference particle, i.e.,

ri = ri+1 − r1 (i = 1, . . . , n), rN = rcm =
N∑

i=1

miri

mtot
. (2)

Here we defined n = N − 1 and mtot = ∑N
i=1 mi is the total

mass of the system. With the above coordinate transformation
the laboratory frame Hamiltonian (1) separates into the term
that describes the motion of the center of mass, Hcm

NR, and the
one that describes the internal motion of the particles within
the system:

Hlab
NR = Hcm

NR + Hint
NR, Hcm

NR = − 1

2mtot
∇2

rN
, (3)

Hint
NR = −∇′

rM∇r +
n∑

i=1

q0qi

ri
+

n∑
i=1

n∑
j<i

qiq j

ri j
. (4)

Here for convenience we introduced the following notations:

r =

⎛
⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎠, ∇r =

⎛
⎜⎜⎝

∇r1∇r2
...

∇rn

⎞
⎟⎟⎠, (5)

mi = mi+1 (i = 0, . . . , n), qi = qi+1 (i = 0, . . . , n), M =
M ⊗ I is the Kronecker product of an n × n matrix M and
a 3 × 3 identity matrix I. Matrix M has diagonal elements
1/(2μi ) with μi = m0mi/(m0 + mi ), while all off-diagonal
elements are equal to 1/(2m0). The prime symbol stands for
the vector or matrix transpose. Note that in these notations
m0 and q0 refer to the nuclear mass and charge respectively.
For species containing 9Be isotope we adopt the value m0 =
16424.20551681. In the case of ∞Be we set nuclear mass m0

to infinity.

B. Basis functions for Rayleigh–Ritz method and solution
to the nonrelativistic problem

For small systems composed of three to eight particles,
a particularly efficient approach to solve the nonrelativistic
Schrödinger equation with Hamiltonian (4) is based on the
variational method augmented with the use of explicitly corre-
lated Gaussian (ECG) functions [38–45]. The ECG basis sets,
which were initially introduced by Boys [38] and Singer [39]
back in the 1960s, offer remarkable flexibility and efficiency
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in a wide range of applications related to quantum few-body
systems.

In the context of this work, we consider two cases: when
the total orbital angular momentum L of the system is either
0 or 1 (S and P states, respectively). The spatial part of the
corresponding ECGs can be written in a compact matrix form
[46,47] as follows:

φ
(L=0,ML=0)
k = exp[−r′(Ak ⊗ I)r], (6)

φ
(L=1,ML=0)
k = zik exp[−r′(Ak ⊗ I)r], (7)

where Ak is an n × n real symmetric matrix of nonlinear
variational parameters (unique for each basis function φk).
The basis in equation (7) that is suitable for systems with the
total orbital angular momentum L = 1, contains a prefactor
zik which may be viewed as a Cartesian form of the angular
function rikY10(rik ). Index ik is an adjustable integer variational
parameter that can vary between 1 and n. We note that it is
also possible to use prefactors in the form (xik ± iyik )/

√
2 that

correspond to the ML = ±1 projection of the orbital angular
momentum on the z axis. Basis functions (6) and (7) must be
square integrable to be used in the expansions of wave func-
tions that correspond to bound states. This requires positive
definiteness of matrix Ak . The positive definiteness can be
easily ensured if Ak is represented in the Cholesky-factored
form, Ak = LkL′

k , where Lk is a lower triangular matrix whose
elements can be varied without any constrains.

To obtain accurate solutions to the nonrelativistic
Schrödinger equation for positronic complexes and their par-
ent ions we use the Rayleigh–Ritz method. In this process we
adopt the spin-free formalism [48,49] with suitable permuta-
tional symmetry projector Y r. Many-particle wave function
was expanded in terms of the properly symmetrized basis
functions (6) or (7):

ψ (r) =
K∑

k=1

ckY rφk (r), (8)

with the nonlinear parameters generated based on the same
basis building and optimization strategy that was adopted in
our previous works [50–53]. At each step of the nonlinear
optimization process that aims to tune parameters Ak with
the aim of minimizing the expectation value of nonrelativistic
Hamiltonian (4), a generalized symmetric eigenvalue problem
is solved to determine the expansion coefficients ck:

Hc = εSc, (9)

where H and S are K × K Hamiltonian and overlap matrices,
respectively, with the elements

Hkl = 〈Y rφk|Hint
NR|Y rφl〉 = 〈φk|Hint

NR|(Y r)†Y rφl〉,
Skl = 〈Y rφk|Y rφl〉 = 〈φk|(Y r)†Y rφl〉,

c is a K-component vector of the linear expansion coefficients,
and ε is the eigenvalue corresponding to a specific ground or
excited state that is being targeted. The dagger symbol stands
for the adjoint operator.

The choice of the Young projection operator Y r is not
unique. Specifically, in the case of a singlet state of positronic
beryllium (assuming that the nucleus is particle 1, positron is

particle 2, and electrons are particles 3–6) it can be chosen in
the form

Y r = (
I + P r

56

)(
I + P r

34

)(
I − P r

46

)(
I − P r

35

)
,

where I is the identity operator, P r
i j is the permutation of

the spatial coordinate of the ith and jth particles, and to be
concise we dropped the normalization factor. For a triplet state
of positronic beryllium the projector can be chosen as

Y r = (
I + P r

34

)(
I − P r

36 − P r
56

)(
I − P r

35

)
.

C. Leading relativistic corrections

Even with a high quality and well-optimized wave func-
tion, the knowledge of nonrelativistic energy alone is often
insufficient for making highly accurate calculations of the
total and transition energies of the quantum states of atoms. To
achieve high accuracy, it is necessary to consider relativistic
and quantum electrodynamics (QED) effects in the calcula-
tions. The commonly employed and most practical approach
for including these effects in the case of few-electron systems
is to expand the total energy in terms of the fine-structure
constant α [54,55]:

ETOT = ENR + α2E (2)
REL + α3E (3)

QED + α4E (4)
HQED + · · · . (10)

Here ENR is the nonrelativistic energy of the state under
consideration, α2E (2)

REL is the leading relativistic corrections,
α3E (3)

QED is the leading QED correction, and α4E (4)
HQED is the

next-order QED correction. In the present work, we consider
only the leading relativistic corrections that are proportional
to α2. The evaluation of each of the terms in (10) involves
determining the expectation value of an effective operator,
which represents the term being calculated. For instance,
E (2)

REL is computed as the expectation value of the Dirac–Breit
Hamiltonian (HREL) in the Pauli approximation [56,57] and
contains the following contributions:

HREL = HMV + HD + HOO + HSS + HSO + HA. (11)

Here HMV, HD, HOO, HSS, HSO, and HA are operators that are
traditionally given the names of the mass–velocity, Darwin,
orbit–orbit, spin–spin, spin–orbit, and annihilation channel
interaction, respectively. The explicit forms of these operators
in internal coordinates are as follows:

HMV = −1

8

⎡
⎣ 1

m3
0

(
n∑

i=1

∇ri

)4

+
n∑

i=1

1

m3
i

∇4
ri

⎤
⎦, (12)

HD = −π

2

⎡
⎣ n∑

i=1

q0qi

m2
i

δ(ri ) +
n∑

j=1

n∑
i �= j

qiq j

m2
i

δ
(
ri j

)⎤⎦, (13)

HOO = −1

2

n∑
i=1

n∑
j=1

q0q j

m0mj

[
1

r j
∇′

ri
∇r j + 1

r3
j

r′
j

(
r′

j∇ri

)∇r j

]

+ 1

2

n∑
i=1

n∑
j>i

qiq j

mimj

[
1

ri j
∇′

ri
∇r j + 1

r3
i j

r′
i j

(
r′

i j∇ri

)∇r j

]
,

(14)

HSS = HSSF + HSSN, (15)
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HSSF = −8π

3

n∑
i=1

n∑
j>i

qiq j

mimj
s′

is jδ(ri j ), (16)

HSSN =
n∑

i=1

n∑
j>i

qiq j

mimj

[
(s′

is j )

r3
i j

− 3
(s′

iri j )(s′
jri j )

r5
i j

]
, (17)

HSO = HSO1 + HSO2, (18)

HSO1 = −
n∑

i=1

q0qi

2mi

(
1

mi
+ 2

m0

)
s′

i

r3
i

[ri × pi], (19)

HSO2 = −
n∑

i=1

n∑
j=1
j �=i

{
q0qi

m0mi

s′
i

r3
i

[ri × p j]

+ qiq j

2mi

s′
i

r3
i j

[
(ri − r j ) ×

(
1

mi
pi − 2

mj
p j

)]}
, (20)

HA = −2π

n∑
i=1

n∑
j=1, j �=i

over e+e− pairs only

qiq j

mimj

(
3

4
+ s′

is j

)
δ
(
ri j

)
. (21)

The above expressions are written with the assumption that
the first particle in the system is the nucleus, while the num-
bers of electrons and positrons are arbitrary. si (i = 0, . . . , n)
stands for the spin operator of particle i + 1. In formula (15)
the spin–spin interaction is split into a sum of the Fermi
contact term, HSSF, and the noncontact (often called dipolar)
term, HSSN. The noncontact part corresponds to a classical
expression for the interaction of two magnetic dipoles and
contributes to a fine-structure splitting of energy levels. The
Fermi contact term HSSF shifts the energy levels without
splitting them. Operators HSO1 and HSO2 in the literature are
often referred to as “spin-same-orbit” and “spin-other-orbit”
interactions, respectively.

It should be noted that the contribution due to the spin-orbit
term, HSO, vanishes for S states. Also, the expectation value
of the noncontact part of the spin–spin term, HSSN, vanishes
for all S states and doublet non-S states. The annihilation
channel interaction, HA, is only present for systems contain-
ing positrons as the summation goes over electron-positron
pairs. Lastly, we note that in our treatment we do not include
the spin–spin interactions that involve nuclear spin and which
give rise to what is known as the hyperfine structure. While
they are formally proportional to α2, they are greatly sup-
pressed by the large value of the nuclear mass and can be
safely neglected in our analysis that aims to account for the
most significant relativistic effects only.

All terms in HREL, except for HOO, HSO, and HSSN, con-
tain singular operators, namely, one- and two-particle Dirac δ

functions, δ(ri ) and δ(ri j ) [in three dimensions, the δ function
is defined as δ(ri ) ≡ δ(xi )δ(yi )δ(zi)], and the fourth power
of the nabla operator, ∇4

ri
. When one computes their expec-

tation values with a variational wave function, it results in
a notably slower convergence as the basis size is increased.
Such behavior takes place because the sampling of the wave
function is essentially restricted locally (within a small re-
gion of singularity, e.g., when ri = 0), amplifying any local
inaccuracies of the wave function. This sharply contrasts with
situations involving “well-behaved” operators, where the in-

tegrand contains no singularities and local inaccuracies of
the approximate wave function largely cancel out globally.
Some effective strategies have been developed to remedy this
problem in the calculations of few-electron systems [58–63].
In the present work we employ the regularization approach
commonly referred to as drachmanization [61,62] to compute
the expectation values of HMV, HD, HSSF, and HA. A number
of our previous calculations on small atoms and ions have
demonstrated that it notably improves the convergence of the
results [51–53,64,65]. To indicate that a specific expectation
value was regularized, we use the tilde symbol, e.g., 〈H̃MV〉 or
〈δ̃(r1)〉.

D. Expectation values of spin-dependent operators
and the framework of spin-free formalism

In calculations of the nonrelativistic energy and the mean
values of the spin-independent operators we adopt the spin-
free formalism, which involves the spatial wave function only.
In this formalism, a suitable permutational symmetry pro-
jector is applied to each basis function, as shown in (8). To
construct a suitable symmetry projector, we follow the stan-
dard procedure involving Young operators [48,49]. However,
in order to compute the expectation values of the operators
that are explicitly spin-dependent, one must use the total (spa-
tial + spin) wave function, which can be represented as

�(r, σ ) = A[
(σ )ψ (r)], (22)

where 
(σ ) is a spin function, σ is an n-component vector
constructed from spin coordinates σi (i = 1, . . . , n) and the
antisymmetrizer A is defined as

A = 1√
ne!

∑
i

ε(Pi )Pi. (23)

Here index i runs over the electrons’ symmetric group that
has ne! elements, ne is the number of electrons in the system,
Pi is the permutation operator acting on both spin and spatial
variables, and ε(Pi ) is the parity of the permutation. For any
operator O, which can be factorized as a product of the spatial
and spin operators OrOσ and commutes with any electronic
permutation Pi, we can calculate the mean value as

〈O〉 =
∑

i

ε(Pi )〈
|OσPσ
i |
〉

σ
〈ψ |OrP r

i |ψ〉r, (24)

where 〈. . .〉σ and 〈. . .〉r stand for averaging over spin and
spatial coordinates, respectively. Let Se and Se be the operator
of the total spin and the corresponding quantum number for
the subsystem composed of all electrons, while S and S are
the total spin operator and the corresponding quantum number
for all light particles in the system (positron and electrons).
Both Se and S are good quantum numbers in the nonrelativistic
theory. For convenience, let us assume definite projections
of the total spin and the total orbital angular momentum on
the z axis, i.e., MS = S, ML = L [note that the prefactor in
Eq. (7) will change from zik to (xik + iyik )/

√
2]. To construct

the electronic spin function θSe,Se (here the first subscript de-
notes the spin and the second one denotes its z projection)
one should build the spin Young operator Yσ corresponding
to the transposed spatial Young tableau, which was used in
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TABLE I. Convergence of total nonrelativistic energies and
positron binding energies εNR (all values are in atomic units) with
the number of ECG basis functions, K. The entries marked with “∞”
correspond to the extrapolated values. For comparison we also show
values obtained in previous best calculations in Refs. [12] and [14].

K Ref. Energy εNR (×103)

9Be(1S) e+[9Be](2;1S)
500 −14.666 428 418 −14.669 153 2.725
1000 −14.666 434 601 −14.669 554 3.119
2000 −14.666 435 372 −14.669 662 3.227
3000 −14.666 435 492 −14.669 681 3.245
4000 −14.666 435 516 −14.669 687 3.251
5000 −14.666 435 522 −14.669 690 3.254
6000 −14.666 435 524 −14.669 691 3.255
∞ −14.666 435 525(1) −14.669 692(1) 3.256(1)

∞Be(1S) e+[∞Be](2;1S)
6000 −14.667 356 506 −14.670 609 3.253
∞ −14.667 356 507(1) −14.670 610(1) 3.254(1)
2500 [12] −14.667 356 45 −14.670 593 3.236
5962 [14] −14.670 60787 3.251
∞ [14] −14.670 611(3) 3.254

9Be+(2S) e+[9Be](2,4;3S)
500 −14.323 863 152 43 −14.575 998 2.135
1000 −14.323 863 470 38 −14.576 702 2.838
2000 −14.323 863 493 01 −14.576 915 3.052
3000 −14.323 863 494 48 −14.576 968 3.104
4000 −14.323 863 494 75 −14.576 985 3.121
5000 −14.323 863 494 79 −14.576 992 3.129
6000 −14.323 863 494 82 −14.576 996 3.132
∞ −14.323 863 494 85(3) −14.577 000(4) 3.137(5)

∞Be+(2S) e+[∞Be](2,4;3S)
6000 −14.324 763 176 78 −14.577 897 3.134
∞ −14.324 763 176 81(3) −14.577 901(4) 3.138(5)
6524 [14] −14.577 89878 3.136
∞ [14] −14.577 902(3) 3.139

9Be+(2S) e+[9Be](2,4;3P)
500 −14.323 863 152 43 −14.572 775 −1.089
1000 −14.323 863 470 38 −14.574 263 0.400
2000 −14.323 863 493 01 −14.574 785 0.921
3000 −14.323 863 494 48 −14.574 909 1.045
4000 −14.323 863 494 75 −14.574 953 1.089
5000 −14.323 863 494 79 −14.574 975 1.111
6000 −14.323 863 494 82 −14.574 985 1.121
∞ −14.323 863 494 85(3) −14.574 994(9) 1.130(9)

∞Be+(2S) e+[∞Be](2,4;3P)
6000 −14.324 763 176 78 −14.575 886 1.123
∞ −14.324 763 176 81(3) −14.575 895(9) 1.132(9)
2500 [12] −14.324 763 18 −14.575 765 1.002

the spin-free calculations. Then

θSe,Se = Yσ θ, (25)

where θ is a primitive ne-electron spin function such that
Se,zθ = Seθ, (26)

Yσ θ �= 0. (27)

If the system under consideration only contains electrons,
then 
 = θSe,Se , and one can calculate the mean values using
Eq. (24).

TABLE II. Mean interparticle distances (in a.u.) calculated for
the positronic systems and parent atomic or ionic states and extrapo-
lated to the infinite basis set.

State 〈rne−〉 〈rne+〉 〈re−e−〉 〈re−e+〉
9Be(1S) 1.493194(0) 2.545442(0)
e+[9Be](2;1S) 1.535790(3) 10.0223(5) 2.606376(6) 9.9799(5)
9Be+(2S) 1.033863(0) 1.755787(0)
e+[9Be](2,4;3S) 2.7603(3) 10.054(2) 4.9720(6) 8.822(2)
e+[9Be](2,4;3P) 2.366(3) 9.729(10) 4.227(5) 8.918(8)

For positron-atom complexes we should build two spin
functions 
high and 
low corresponding to the value of the to-
tal spin quantum number S = Se ± 1/2 (if Se = 0 then 
low =

high). If we adopt a notation where in the product of spin
functions we first write the positron spin function and second
the spin function of the electrons, then according to the rules
of addition of angular momenta:


high = α θSe,Se , (28)


low = C
Se− 1

2 ,Se− 1
2

1
2 ,− 1

2 ,Se,Se
β θSe,Se + C

Se− 1
2 ,Se− 1

2
1
2 , 1

2 ,Se,Se−1
α θSe,Se−1, (29)

where CS,M
S1,M1,S2,M2

are the Clebsch–Gordan coefficients, and α

and β are the eigenstates of positronic spin projector sp,z with
the eigenvalues of 1/2 and −1/2, respectively. Spin functions
for the right-hand side can be generated with the electronic
and positronic lowering operators Se,− and sp,−:

αθSe,Se−1 ∼ Se,−
high, βθSe,Se ∼ sp,−
high. (30)

The spin-orbit and noncontact spin–spin operators can be
expressed as a sum of scalar products of spin and spatial tensor
operators of rank k (k = 1 for HSO and k = 2 for HSSN). For
the principal case (S = MS , L = ML) the mean value of such
operator O = ∑

j T (k)
j · U (k)

j when sandwiched between the
states with the same value of S and L can be calculated as
follows [66,67]:

〈O〉J = CJ

∑
i

ε(Pi )
∑
{ j}

〈
SS|T (k)
j,0 Pσ

i |
SS〉σ

×〈ψLL,γ |U (k)
j,0 P r

i |ψLL,γ 〉r, (31)

where i runs over all electron permutations and { j} denotes the
sum over all particles. The first two subscripts in the spatial
part of the wave function denote the total orbital momentum
and its projection, while the subscript γ refer to all the other
quantum numbers that uniquely identify the state. The second
subscript in tensor operators denotes a component. Angular
coefficient CJ reflects rotational properties of the matrix ele-
ment and is expressed through the 6 j symbol:

CJ = δJJ ′δMJ MJ′ (−1)S+L+J

×
√

(2S − k)! (2S + k + 1)! (2L − k)! (2L + k + 1)!

(2S)! (2L)!

×
{

S S k
L L J

}
, (32)

where J is the total angular momentum of the system and MJ

is its projection.
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TABLE III. Convergence of the spin-independent relativistic corrections and two-particle (nucleus–electron, electron–electron, and
electron–positron) contact densities with the number of basis functions K for different systems and isotopes. All values are in a.u.

K 〈δ̃ne−〉 〈δ̃e−e−〉 〈δ̃e−e+〉 〈H̃MV〉 〈H̃D〉 〈HOO〉
9Be(1S)

500 8.840 587 591 0.267 501 933 −270.640 669 4 217.145 907 6 −0.918 508 83
1000 8.840 613 913 0.267 505 901 −270.637 675 6 217.146 494 3 −0.918 464 34
2000 8.840 616 460 0.267 506 202 −270.637 204 0 217.146 552 7 −0.918 462 69
3000 8.840 617 149 0.267 506 263 −270.636 811 7 217.146 568 8 −0.918 461 73
4000 8.840 617 270 0.267 506 276 −270.636 754 4 217.146 571 6 −0.918 461 64
5000 8.840 617 325 0.267 506 281 −270.636 665 0 217.146 572 9 −0.918 461 60
6000 8.840 617 338 0.267 506 283 −270.636 661 1 217.146 573 2 −0.918 461 59

∞Be(1S)

6000 8.842 251 637 0.267 550 914 −270.703 631 1 217.186 806 3 −0.891 823 59
9Be+(2S)

500 11.699 524 125 0.526 758 279 −268.249 805 8 215.566 254 4 −0.936 298 89
1000 11.699 528 906 0.526 758 678 −268.249 355 7 215.566 340 8 −0.936 297 60
2000 11.699 529 294 0.526 758 732 −268.248 993 7 215.566 347 6 −0.936 297 17
3000 11.699 529 331 0.526 758 736 −268.248 964 5 215.566 348 3 −0.936 297 11
4000 11.699 529 340 0.526 758 737 −268.248 904 1 215.566 348 4 −0.936 297 09
5000 11.699 529 341 0.526 758 737 −268.248 899 4 215.566 348 4 −0.936 297 09
6000 11.699 529 342 0.526 758 737 −268.248 892 4 215.566 348 4 −0.936 297 08

∞Be+(2S)

6000 11.701 685 284 0.526 846 196 −268.315 110 1 215.606 162 7 −0.909 902 36
e+[9Be](2;1S)

500 8.830 690 578 0.266 941 819 0.002 183 7 −270.309 429 7 216.935 242 1 −0.941 260 13
1000 8.831 748 483 0.266 991 092 0.002 150 4 −270.341 209 8 216.960 423 9 −0.940 943 22
2000 8.832 060 256 0.267 005 073 0.002 159 3 −270.346 755 8 216.968 086 8 −0.941 046 93
3000 8.832 109 692 0.267 008 877 0.002 161 2 −270.345 393 7 216.969 276 8 −0.941 063 19
4000 8.832 131 920 0.267 010 108 0.002 161 3 −270.344 855 5 216.969 812 0 −0.941 058 00
5000 8.832 139 174 0.267 010 606 0.002 161 4 −270.344 768 2 216.969 986 1 −0.941 059 59
6000 8.832 142 599 0.267 010 909 0.002 161 6 −270.344 536 6 216.970 068 1 −0.941 060 80

e+[∞Be](2;1S)

6000 8.833 778 562 0.267 055 642 0.002 160 6 −270.411 544 1 217.010 329 1 −0.914 436 39
e+[9Be](2,4;3S)

500 8.758 346 623 0.262 732 519 0.007 367 0 −267.791 470 7 215.261 501 0 −0.982 003 70
1000 8.758 970 614 0.262 743 631 0.007 201 4 −267.821 883 9 215.274 856 2 −0.977 375 26
2000 8.759 228 282 0.262 758 289 0.007 148 9 −267.824 915 2 215.280 382 4 −0.975 781 25
3000 8.759 321 953 0.262 763 170 0.007 138 5 −267.826 343 5 215.282 511 0 −0.975 518 69
4000 8.759 360 015 0.262 765 208 0.007 135 7 −267.827 857 2 215.283 392 3 −0.975 466 57
5000 8.759 370 748 0.262 766 509 0.007 133 9 −267.826 669 4 215.283 614 4 −0.975 414 93
6000 8.759 379 186 0.262 767 063 0.007 132 9 −267.826 328 6 215.283 803 7 −0.975 391 77

e+[∞Be](2,4;3S)

6000 8.760 991 466 0.262 810 592 0.007 132 2 −267.892 345 9 215.323 495 5 −0.949 032 96
e+[9Be](2,4;3P)

500 8.735 093 018 0.261 783 350 0.004 785 9 −267.030 973 2 214.662 670 8 −0.888 870 00
1000 8.739 453 551 0.261 945 499 0.005 016 0 −267.182 371 8 214.771 968 1 −0.895 948 61
2000 8.741 448 989 0.262 023 993 0.005 122 6 −267.245 925 7 214.821 928 9 −0.899 678 77
3000 8.741 897 830 0.262 043 357 0.005 140 0 −267.257 700 1 214.833 051 8 −0.900 304 16
4000 8.742 075 104 0.262 051 374 0.005 148 1 −267.262 950 8 214.837 453 8 −0.900 605 75
5000 8.742 170 147 0.262 055 615 0.005 152 4 −267.265 143 6 214.839 813 7 −0.900 758 07
6000 8.742 221 861 0.262 058 381 0.005 155 2 −267.266 423 8 214.841 095 3 −0.900 858 25

e+[∞Be](2,4;3P)

6000 8.743 833 567 0.262 101 876 0.005 154 5 −267.332 369 2 214.880 772 7 −0.874 566 10
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TABLE IV. Convergence of the expectation values of the Fermi contact spin–spin interaction, 〈HSSF〉, for considered systems with the
number of basis functions K. All values are in a.u.

K Be(1S) Be+(2S) e+[Be](2;1S) e+[Be](2;3S) e+[Be](4;3S) e+[Be](2;3P) e+[Be](4;3P)

9Be

500 10.084 614 72 9.929 162 216 10.064 447 9.782 987 9.968 189 8 9.792 351 9.912 588
1000 10.084 739 71 9.929 167 445 10.065 647 9.785 309 9.966 302 2 9.792 624 9.918 541
2000 10.084 747 36 9.929 168 211 10.065 949 9.786 241 9.965 897 6 9.792 887 9.921 451
3000 10.084 748 94 9.929 168 258 10.066 039 9.786 459 9.965 852 4 9.793 086 9.922 080
4000 10.084 749 19 9.929 168 274 10.066 067 9.786 542 9.965 863 6 9.793 142 9.922 339
5000 10.084 749 31 9.929 168 277 10.066 077 9.786 592 9.965 868 1 9.793 169 9.922 472
6000 10.084 749 34 9.929 168 278 10.066 083 9.786 613 9.965 865 0 9.793 196 9.922 569

∞Be

6000 10.086 431 90 9.930 816 839 10.067 770 9.788 267 9.967 501 3 9.794 850 9.924 205

For the mean value of HSO we have

T (1)
j,0 = s j,z, (33)

U (1)
j,0 = i

q0q j

2mj

(
1

mj
+ 2

m0

)
1

r3
j

[
r j × ∇r j

]
z

+ i
n∑

k=1
k �= j

{
q0q j

m0mj

1

r3
j

[
r j × ∇rk

]
z

− q jqk

2mj

1

r3
jk

[
r jk ×

(
2

mk
∇rk − 1

mj
∇r j

)]
z

}
. (34)

For the mean value of HSSN,

T (2)
jk,0 = 1√

6
(3s j,zsk,z − s′

jsk ), (35)

U (2)
jk,0 = 1√

6

[(
3
(∇r j

)
z

(∇rk

)
z − ∇′

r j
∇rk

) 1

r jk

]
, (36)

where the gradients act only on 1/r jk .
For the e+[Be(4;3P)] state CSO

J= 1
2 , 3

2 , 5
2

= −5/3, −2/3, 1, and

CSSN
J= 1

2 , 3
2 , 5

2
= 5, −4, 1. For the e+[Be(2;3P)] state CSO

J= 1
2 , 3

2
= −2,

1 and noncontact spin–spin term vanishes.
It should be mentioned that our calculations do not include

the off-diagonal matrix elements corresponding to states with
different S and L quantum numbers. However, it is estimated

that their contribution is rather insignificant in 3P states of Be
[67].

III. RESULTS AND DISCUSSION

In what follows each term of a positron-atom complex is la-
beled as 2S+1 ; 2Se+1LJ (L = S, P) in accordance with Ref. [68].
We omit the J value if it is not relevant.

A. Nonrelativistic energies and structural properties

First, we calculated nonrelativistic energies for the
positronic complexes and their parent atoms or ions by min-
imizing the expectation value of nonrelativistic Hamiltonian
(4). The results are presented in Table I for different basis
sizes K to demonstrate the convergence of the energies. We
compare our results corresponding to the infinite nuclear mass
with those obtained in earlier works [12,14]. Note that the
smaller basis sets (up to 2500 ECGs) for Be+(2S), Be(1S),
e+[Be](2;1S), and e+[Be](2,4;3P) in present calculations were
adapted from Ref. [12]. Larger bases (3000 ECGs and up)
were generated by adding new ECGs and re-optimizing the
nonlinear parameters of the entire set of basis functions as
described in Refs. [50–53].

The value of a positron binding energy εNR is calculated
differently depending on the decay channel of the positronic

TABLE V. Convergence of the expectation values of the annihilation channel interaction, 〈HA〉, with the number of basis functions K. All
values are in a.u.

K e+[Be](2;1S) e+[Be](2;3S) e+[Be](4;3S) e+[Be](2;3P) e+[Be](4;3P)

9Be

500 0.041 162 0.046 263 0.185 165 0.030 094 0.120 271
1000 0.040 533 0.045 247 0.180 991 0.031 592 0.126 029
2000 0.040 702 0.044 925 0.179 667 0.032 277 0.128 700
3000 0.040 737 0.044 861 0.179 406 0.032 389 0.129 134
4000 0.040 739 0.044 844 0.179 335 0.032 442 0.129 339
5000 0.040 742 0.044 833 0.179 290 0.032 469 0.129 446
6000 0.040 744 0.044 827 0.179 265 0.032 487 0.129 517

∞Be

6000 0.040 726 0.044 822 0.179 248 0.032 482 0.129 498
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TABLE VI. Convergence of the spin–orbit and noncontact spin–spin operators’ mean values 〈HSO(SSN)〉J/CSO(SSN)
J with the number of basis

functions K for e+[9Be](2,4;3P). Labels “high” and “low” stand for the states e+[9Be](4;3P) and e+[9Be](2;3P), respectively. All values are in
a.u.

K 〈HSO1〉high 〈HSO2〉high 〈HSO1〉low 〈HSO2〉low 〈HSSN〉high

9Be

500 0.155 00 −0.108 93 0.104 06 −0.073 36 0.001 32
1000 0.147 82 −0.103 05 0.099 29 −0.069 46 0.001 22
2000 0.144 05 −0.100 13 0.096 77 −0.067 51 0.001 17
3000 0.143 14 −0.099 39 0.096 16 −0.067 02 0.001 16
4000 0.142 76 −0.099 10 0.095 91 −0.066 83 0.001 15
5000 0.142 56 −0.098 94 0.095 77 −0.066 72 0.001 15
6000 0.142 45 −0.098 85 0.095 70 −0.066 66 0.001 15

∞Be

6000 0.142 45 −0.098 84 0.095 70 −0.066 66 0.001 15

complex:

εNR = ENR(Be) − ENR(e+[Be]) (37)

for the e+[Be](2;1S), and

εNR = ENR(Be+) − 0.25 − ENR(e+[Be]) (38)

for e+[Be](2,4;3S) and e+[Be](2,4;3P), where −0.25 is the
binding energy of the positronium in its ground state.

The results of our nonrelativistic calculations for S states
are in perfect agreement with the values obtained in Ref. [14]
that adopted a similar computational approach and compa-
rable basis size. As one can see the nonrelativistic value of

FIG. 1. Fine-structure splitting of the e+[9Be](2;3P) and
e+[9Be](4;3P) states. E shift

REL corresponds to the total relativistic energy
without the spin-orbit and noncontact spin–spin corrections. The
vertical axis in this figure is shifted so that E shift

REL is zero for the
doublet state. The difference in E shift

REL between the doublet and
quartet states comes from the Fermi contact and annihilation channel
interactions. The noncontact spin–spin term for the doublet state
vanishes due to the rotational symmetry.

the positron binding energy for the P state differs from the
value from Ref. [12] by about 12%, which is attributed to a
significant increase of the basis size (6000 ECG basis func-
tions in the present work vs 2500 functions in Ref. [12]) and
more thorough optimization of the nonlinear parameters at
later stages of the calculations.

We also note that the negative positron binding energy of
e+Be(2,4;3P) for K = 500 is due to the fact that the conver-
gence of the nonrelativistic energy for this state is slower.
It takes quite a few ECGs and a lot of numerical effort to
converge the total nonrelativistic energy within the tolerance
that is comparable or smaller than the magnitude of the (tiny)
positron affinity. Also, in general, obtaining the same level of
accuracy for a system with a larger number of particles (e.g.,
six-particle e+[Be] vs four-particle Be+) requires a consider-
ably larger number of basis functions.

As the numbers in Table I show the finite value of the
mass of the Be nucleus has vanishingly small effect on the
positron binding energies, changing it in the third figure after
the decimal point. The nuclear recoil effects in the positronic
beryllium and its parent atom or ion largely cancel out.

Based on their structural properties, the positron–atom
complexes can be schematically considered as mixtures of two
major configurations: a positron “orbiting” slightly polarized
atom and positronium atom interacting with the atomic ion.
In Table II we show the mean interparticle distances for the
positronic systems and parent atomic or ionic states. It can be
seen that the value of 〈rne−〉 is really close for 9Be(1S) and
e+[9Be](2;1S), which suggests that the atom is only slightly
polarized when a positron is attached. For the triplet states
of the positron-atom complexes situation is opposite: both
nucleus–electron 〈rne−〉 and electron–electron 〈re−e−〉 mean
distances are much larger when a positron is attached, which
is consistent with the model of a positronium atom orbiting the
parent ion. It should be noted that the mean electron-positron
distance 〈re−e+〉 in all considered states of e+[Be], which
ranges from 8.82 to 9.98 a.u., is much larger than it is in an
isolated positronium atom, where it takes the value of 3 a.u.
This is a reflection of extremely weak binding of the positron
or positronium to the beryllium atom or ion, respectively. In
other words, in all states of e+[Be] the positron is far from the
inner electrons of beryllium.
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TABLE VII. Convergence of total relativistic correction α2〈HREL〉 with the number of basis functions K. All values are in mhartree.

K Be(1S) Be+(2S) e+[Be](2;1S) e+[Be](2;3S) e+[Be](4;3S)

9Be

500 −2.360 561 0 −2.326 588 3 −2.354 234 −2.326 164 −2.308 905
1000 −2.360 361 3 −2.326 559 4 −2.354 538 −2.326 757 −2.309 890
2000 −2.360 332 6 −2.326 539 7 −2.354 406 −2.326 506 −2.309 764
3000 −2.360 310 7 −2.326 538 1 −2.354 264 −2.326 447 −2.309 729
4000 −2.360 307 5 −2.326 534 9 −2.354 205 −2.326 474 −2.309 763
5000 −2.360 302 6 −2.326 534 6 −2.354 190 −2.326 394 −2.309 688
6000 −2.360 302 4 −2.326 534 3 −2.354 173 −2.326 364 −2.309 660

∞Be

6000 −2.360 218 1 −2.326 446 9 −2.354 091 −2.326 274 −2.309 572

B. Relativistic corrections

We present all data for the mean values that appear in
individual terms of Eq. (11) in Tables III to VI.

In Table III one can see the convergence of the expectation
values of two-particle δ functions (which give the probability
densities at particle coalescence points) as well as the
mass–velocity, Darwin, and orbit–orbit Hamiltonians
for all states and systems considered in this work. The
quantities in this table depend neither on how the spins of the
electrons and positron are added nor on the value of the total
angular-momentum quantum number J . A useful reference
value for the electron-positron contact densities listed in
Table III is that of the positronium atom, which can be
evaluated analytically and is 〈δe−e+〉 = 1/(8π ) ≈ 0.039 789
a.u. One can see that the corresponding entries in Table III
are considerably smaller than this value. This indicates that
even in the triplet states, where the Ps + Be+ configuration
dominates, the Ps atom “orbiting” the ion is rather loose due
to its interaction with the latter.

In Table IV we show the expectation values of the Fermi
contact interaction, given by Eq. (16), for all systems and
states considered in this work. Note that for positronic
beryllium the expectation values have different magnitude
depending on the total (electrons + positron) spin quantum
number S. For the quartet states 〈HSSF〉 they are about 1%–2%
larger than for the doublet states.

Table V shows the expectation values of the annihilation
channel interaction [HA in Eq. (21)], which is present only in
systems containing a positron. As expected, the magnitude of
〈HA〉 in the quartet states is much larger (roughly by a factor
of four) than in the doublet states. This notable difference is
easy to understand: the factor 3/4 + s′

is j that is present in
Eq. (21) vanishes for a positron-electron pair if the spins of
the particles in this pair add up to zero.

The mean values of J-dependent operators for the
e+[Be](2;3P) and e+[Be](4;3P) states are given in Table VI.
One can note that the spin-same-orbit term 〈HSO1〉 is largely
(by about 70%) canceled out by the spin-other-orbit term
〈HSO2〉. The corresponding fine-structure splitting diagram is
shown in Fig. 1. One can see that the contribution of the
noncontact spin–spin interaction energy, ESSN, to the fine-
structure splitting is significantly smaller than that of the
spin-orbit interaction energy ESO. This situation is similar to

what occurs in the lowest triplet P state of neutral beryllium
[67]. Another thing to note is that even after the inclusion of
the fine-structure splitting the energy levels of the quartet state
(4;3P) still remain higher than those for the doublet state (2;3P).

The total energies of the states under consideration are
calculated as follows:

ETOT = ENR + α2(E shift
REL + ESO + ESSN

)
, (39)

where

E shift
REL = EMV + ED + EOO + ESSF + EA (40)

is the part of the relativistic correction E (2)
REL that uniformly

shifts the entire manifold of fine-structure levels and

ESO = 〈HSO〉J , ESSN = 〈HSSN〉J . (41)

In the last two expressions, 〈. . .〉J stands for the J-dependent
average given by Eq. (31).

It is interesting to compare the values of J-dependent
relativistic corrections for the e+[9Be](2,4;3P) states with
those for the neutral 9Be(3P) calculated in the ECG basis
by Stanke et al. [69]. They obtained the values of 0.302760,
−0.208909, and 0.002561 a.u. for SO1, SO2, and SSN
corrections, respectively (we excluded the factor of α2 from
their data). These values are about 2.1–2.2 times greater than
the one for the e+[9Be](4;3P) state and about 3.1–3.2 times
greater than the one for the e+[9Be](2;3P) state. Overall, the
significantly smaller magnitude of J-dependent relativistic
corrections for positronic beryllium in the P state can be
explained by the fact that the parent state for this system
is Be+(2S) + Ps. Thus, the orbital angular momentum in
e+[Be](2,4;3P) comes largely from the outer electron and
positron that are much further away from the three inner
electrons and nucleus than it is in the neutral beryllium
Be(3P). Also, the opposite charges of the outer electron and
positron forming the Ps atom may cause a partial cancellation
of the corresponding contributions to ESO1.

Tables VII and VIII contain the convergence of total
relativistic correction, α2〈HREL〉, for the S and P states of
the systems considered in this work, respectively. As one can
see, the quantities are well converged. Specifically, for all
states of the positronic beryllium all values are converged to
within five figures after the decimal point, i.e., the estimated
accuracy of the total relativistic correction is around 10−8

hartree or better.
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TABLE VIII. Convergence of total relativistic correction α2〈HREL〉 with the number of basis functions K. All values are in mhartree.

K e+[Be](2;3P1/2) e+[Be](2;3P3/2) e+[Be](4;3P1/2) e+[Be](4;3P3/2) e+[Be](4;3P5/2)

9Be

500 −2.316 227 −2.311 324 −2.305 490 −2.303 671 −2.299 229
1000 −2.318 660 −2.313 894 −2.307 399 −2.305 597 −2.301 299
2000 −2.319 470 −2.314 797 −2.307 960 −2.306 182 −2.301 973
3000 −2.319 509 −2.314 854 −2.307 959 −2.306 185 −2.301 994
4000 −2.319 558 −2.314 913 −2.307 989 −2.306 217 −2.302 036
5000 −2.319 552 −2.314 911 −2.307 973 −2.306 202 −2.302 024
6000 −2.319 553 −2.314 915 −2.307 967 −2.306 197 −2.302 022

∞Be

6000 −2.319 465 −2.314 825 −2.307 881 −2.306 110 −2.301 934

Tables IX and X contain the main results of the paper:
the total energies of the positronic complexes, their parent
systems, and positron binding energies. One can observe that
the inclusion of relativistic corrections only slightly lowers the
positron binding energy for all considered states. The effect is
less significant for S states, where the change is within 0.5%.
For P states, the magnitude of the change is more notable
and ranges from 0.6% to 2.2%. Such a small change in the
positron binding energy is attributed to nearly complete can-
cellation of the relativistic effects in any specific state of the
positronic beryllium and its parent system. From Tables VII
and VIII one can see that the total relativistic correction for
all systems is around −2.3 mhartree, which is comparable in
magnitude to the positron binding energies given in Table X
(1.1–3.2 mhartree). Yet by far the largest contribution to the
relativistic correction, which is due to HMV and HD inter-
actions, comes from the inner-shell electrons, whose states

TABLE IX. Total relativistic energies (in hartree) of all systems
and states considered in the present work. The included uncertainties
are due to the basis-size truncation.

State Energy

9Be(1S) −14.668 795 828(1)
∞Be(1S) −14.669 716 725(1)
9Be+(2S) −14.326 190 029(1)
∞Be+(2S) −14.327 089 623(1)
e+[9Be](2;1S) −14.672 046(1)
e+[∞Be](2;1S) −14.672 964(1)
e+[9Be](2;3S) −14.579 326(4)
e+[∞Be](2;3S) −14.580 228(4)
e+[9Be](4;3S) −14.579 310(4)
e+[∞Be](4;3S) −14.580 211(4)
e+[9Be](2;3P1/2) −14.577 313(9)
e+[∞Be](2;3P1/2) −14.578 214(9)
e+[9Be](2;3P3/2) −14.577 309(9)
e+[∞Be](2;3P3/2) −14.578 210(9)
e+[9Be](4;3P1/2) −14.577 302(9)
e+[∞Be](4;3P1/2) −14.578 203(9)
e+[9Be](4;3P3/2) −14.577 300(9)
e+[∞Be](4;3P3/2) −14.578 201(9)
e+[9Be](4;3P5/2) −14.577 296(9)
e+[∞Be](4;3P5/2) −14.578 197(9)

remain essentially unaltered when the atom binds a positron.
The somewhat larger relative change of the positron binding
energies for the P-states of e+[Be] takes place because there is
no cancellation in the spin-orbit interaction [there is no spin-
orbit interaction in the parent system, Be+(2S)]. However,
the magnitude of the spin–orbit interaction alone in P-states
of e+[Be] is rather small and it is insufficient to cause any
qualitative change.

C. Lifetimes

From an experimental perspective it is crucial to estimate
the lifetimes of the positronic complexes. We use the semi-
empirical scheme [14,68,70] to calculate the annihilation rates
of the positronic complexes with the emission of two or three
photons:

�2γ = 8πD0〈δe−e+,0〉, �3γ = 8πD1〈δe−e+,1〉, (42)

where D0, D1 are the two- and three-photon annihilation rates
of para- and ortho-positronium, respectively. Indices 0 and 1
here stand for the relative spin of the annihilating electron-
positron pair.

TABLE X. Nonrelativistic (εNR) and relativistic (εREL) positron
binding energies (in mhartree) for different states of positronic
beryllium.

e+[A](state) εNR εREL

e+[9Be](2;1S) 3.256(1) 3.250(1)
e+[∞Be](2;1S) 3.254(1) 3.247(1)
e+[9Be](2;3S) 3.137(5) 3.136(5)
e+[∞Be](2;3S) 3.138(5) 3.138(5)
e+[9Be](4;3S) 3.137(5) 3.120(5)
e+[∞Be](4;3S) 3.138(5) 3.121(5)
e+[9Be](2;3P1/2) 1.130(9) 1.123(9)
e+[∞Be](2;3P1/2) 1.132(9) 1.125(9)
e+[9Be](2;3P3/2) 1.130(9) 1.119(9)
e+[∞Be](2;3P3/2) 1.132(9) 1.120(9)
e+[9Be](4;3P1/2) 1.130(9) 1.112(9)
e+[∞Be](4;3P1/2) 1.132(9) 1.113(9)
e+[9Be](4;3P3/2) 1.130(9) 1.110(9)
e+[∞Be](4;3P3/2) 1.132(9) 1.111(9)
e+[9Be](4;3P5/2) 1.130(9) 1.106(9)
e+[∞Be](4;3P5/2) 1.132(9) 1.107(9)
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TABLE XI. Spin-dependent expectation values 〈δ̃e−e+〉 (in a.u.), average lifetimes τ (in ns), and averaged annihilation rates �2γ ,av (in µs−1)
of the positronic complexes considered in this work.

e+[A](state) Ref. 〈δ̃e−e+,0〉 〈δ̃e−e+,1〉 τ �2γ ,av

e+[9Be](2;1S) This work 2.1616(2) ×10−3 6.4847(5) ×10−3 2.2979(1) 434.04(4)
e+[9Be](2;1S) Ref. [14] 2.140 ×10−3 6.419 ×10−3 2.321 429.7
e+[9Be](2;3S) This work 2.1397(3) ×10−2 7.134(1) ×10−3 0.23268(3) 1432.3(2)
e+[9Be](2;3S) Ref. [14] 2.134 ×10−2 7.12 ×10−3 0.2333 1428
e+[9Be](4;3S) This work 7.36(7) ×10−7 2.8531(4) ×10−2 192.46(3)
e+[9Be](4;3S) Ref. [14] 6.4 ×10−7 2.846 ×10−2 193.2
e+[9Be](2;3P) This work 1.545(1) ×10−2 5.171(4) ×10−3 0.3222(2) 1035(1)
e+[9Be](4;3P) This work 7.62(3) ×10−7 2.061(1) ×10−2 193.2(2)

The values of Di (i = 1, 2) are obtained in QED as an
expansion in α:

Di = D(0)
i [1 + Aiα + Biα

2 + · · · ], (43)

where D(0)
i is the leading-order annihilation rate, and

Ai, Bi, . . . are the coefficients of the expansion. The expres-
sions for D(0)

i (in a.u.) are the following:

D(0)
0 = α5

2
, D(0)

1 = 2(π2 − 9)α6

9π
. (44)

We used the value of D0 from Ref. [71], evaluated up to
the order of α3 ln2(α): D0 = 7989.50(2) µs−1, and D1 from
Ref. [72], evaluated up to α3 ln(α): D1 = 7.039979(11) µs−1.

The expectation values in (42) are calculated as follows:

〈δe−e+,0〉 = 〈�|
ne∑

i=1

|χi0〉δ(re+i )〈χi0||�〉, (45)

〈δe−e+,1〉 = 〈�|
3∑

j=1

ne∑
i=1

|χi j〉δ(re+i )〈χi j ||�〉, (46)

where the summation over i goes over electrons only and χi j

are spin-pair functions:

χi0 = 1√
2

[β(e+)α(i) − α(e+)β(i)], (47)

χi1 = 1√
2

[β(e+)α(i) + α(e+)β(i)], (48)

χi2 = α(e+)α(i), χi3 = β(e+)β(i). (49)

Note that 〈δe−e+,0〉 + 〈δe−e+,1〉 = ne〈δe−e+〉. The average life-
time of a positronic system is calculated as

τ = 1

�2γ + �3γ

. (50)

We also evaluate the spin-averaged annihilation constant,
which is most likely to be measured experimentally:

�2γ ,av = (2Shigh + 1)�2γ ,high + (2Slow + 1)�2γ ,low

2Shigh + 2Slow + 2
. (51)

We calculate these quantities and present them in Table XI,
where we also make a comparison with the values obtained in
Ref. [14] for S states. We note that we use the “drachmanized”
values of the δ function expectation values in all calculations
in order to improve the accuracy. This makes our numerical

results better converged by around three orders of magnitude
than those reported previously in Ref. [14].

Since the main (two-photon) annihilation channel corre-
sponds to the relative spin of the pair being equal to zero,
lifetimes of the “high” states, where spin projections of the
outer electrons and the positron are the same, are much larger
than for the “low” states. This trend can be clearly seen in
Table XI. All quartet (total spin) states have the average life-
time around 193 nanoseconds, while for the doublet states
they are two to three orders of magnitude shorter, ranging
from 0.23 to 2.3 nanoseconds.

IV. CONCLUSION

In the present work we studied three bound states of
e+[Be]: singlet and triplet S states, and the triplet P state.
Using the variational method with large expansions in terms
of explicitly correlated Gaussian basis functions we accurately
determined the nonrelativistic energies, structural properties,
and electron–positron annihilation rates of the positronic
complexes and its decay products. Then we perturbatively in-
cluded the leading-order relativistic corrections and calculated
the resulting positron binding energies. We showed that taking
the leading-order scalar and spin-dependent relativistic effects
into account lowers the binding energies of e+[Be] by just
about 2% or less. Even though in absolute terms the relativis-
tic effects, most notably the scalar ones—the mass–velocity
and Darwin, shift the energy levels of all considered states of
positronic beryllium quite significantly (the change of around
−2.3 mhartree is comparable or exceeds the positron binding
energies), these effects almost completely cancel out when
the difference with the parent system (i.e., positron bind-
ing energy) is computed. At the same time, the spin-orbit
and noncontact spin–spin effects in the triplet P state of the
positronic beryllium, which do not cancel out at all (they
vanish in the parent system), are too small in magnitude to
alter the positron binding energy significantly. The same ap-
plies to the annihilation channel interaction in all considered
states of e+[Be]—while only a small fraction of it is canceled
out, it is simply too weak to cause any notable change in
the positron binding energies. Therefore, the results of our
calculations provide an unambiguous and rigorous theoretical
confirmation of the dynamical stability of the above three
states of positronic beryllium. We hope that the existence of
such positron–atom complexes will be confirmed in future
experiments.
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