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PHYS 222 Classical Mechanics II (Spring 2019)
Instructor: Sergiy Bubin

Midterm Exam 3

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others).

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are
allowed. Some information and formulae that could be be useful may be provided in the
appendix. Please look through it before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. In lecture we used the method of separation of variables to obtain the general
solution q(x, t) to the problem of a vibrating continuos string fixed at both ends, that is q(0, t) =
0 and q(L, t) = 0 (the Dirichlet boundary conditions), given the initial conditions q(x, 0) = f(x)
and q̇(x, 0) = g(x). Use the same method to solve a related problem, in which everything is the
same except that the ends of the string are loose (e.g. you can imagine that the ends have small
rings that can slide up and down on two thin frictionless vertical columns). Mathematically
these boundary conditions (called the Neuman boundary conditions) are stated as ∂q

∂x

∣∣
x=0

= 0

and ∂q
∂x

∣∣
x=L

= 0.

Problem 2. The dispersion relation for waves propagating on the surface of water in the
presence of gravity force is known to be ω2 = gk tanh(kh), where g is the acceleration by
gravity and h is the water depth. Answer the following questions and be specific when you do
so (i.e. provide specific expresions whenever possible):

(a) Is there any difference between phase velocity and group velocity for water waves? How do
they compare in the open ocean?

(b) Do waves get smaller or taller as they approach a beach/shore? Do waves break at a beach?

Problem 3. Consider the propagation of light in a moving medium (e.g. water). The index of
refraction of the medium is n. The medium moves with velocity v (not negligible compared to
the speed of light c) away from the origin in the laboratory frame K.

(a) What is the speed of light propagating in the medium as measured in the laboratory frame
K?

(b) How does it differ from the speed of light when the medium is stationary?

(c) If the velocity of the medium is v = c, what does the answer to question (a) becomes?



Appendix: formula sheet

Lagrangian formalism

L = T − V , ∂L
∂qi

− d
dt

(
∂L
∂q̇i

)
= 0.

Least action principle

δS = 0, S =
t2∫
t1

L(q, q̇, t)dt.

Beltrami identity

J [y] =
b∫
a

F (y, y′)dx, F − y′ ∂F
∂y′

= const.

Hamiltonian formalism

pi =
∂L
∂q̇i

, H =
∑
i

piq̇i − L, q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

.

Poisson bracket

{f, g} =
∑
i

(
∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

)
, ḟ = ∂f

∂t
+ {f,H}.

Canonical transformation

P = P (p, q), Q = Q(p, q) is canonical if leaves the form of the Hamilton equations unchanged.
Also {Q,P} = 1.

Liouville’s theorem∑
i

(
∂ρ
∂qi
q̇i +

∂ρ
∂pi
ṗi

)
+ ∂ρ

∂t
= 0.

Virial theorem

T = −1
2

∑
i

Fi · ri. For a system with the interaction potential V (r) = αrn we have T = n
2
V

Definition of the tensor of inertia

I =


∑
i

mi(y
2
i + z2i ) −

∑
i

mixiyi −
∑
i

mixizi

−
∑
i

miyixi
∑
i

mi(x
2
i + z2i ) −

∑
i

miyizi

−
∑
i

mizixi −
∑
i

miziyi
∑
i

mi(x
2
i + y2i )


Displaced axis theorem

Tensor of inertia about an origin displaced by a constant vector a is given by
(Ia)αβ = (Ic.m.)αβ +M(a2δαβ − aαaβ)

Moment of inertia about an axis defined by a normal vector

Moment of inertia In about an axis that passes through the center of mass and is defined by a
normal vector n is given by (here I is the tensor of inertia of the system):
In = nT In



Euler angles and the transformation between the lab and body frame

If r′ is the position in the fixed/lab frame and r is the position in the body frame then
r = UψUθUϕr

′ = Ur′, where

Uϕ =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 Uθ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 Uϕ =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


Euler equations for a rigid body

I1ω̇1 − ω2ω3(I2 − I3) = N1

I2ω̇2 − ω3ω1(I3 − I1) = N2

I3ω̇3 − ω1ω2(I1 − I2) = N3

Normal frequencies and normal modes of a system of n coupled harmonic
oscillators

Generalized eigenvalue problem: Ka(i) = ω2
iMa(i)

Trajectories: x(t) =
∑
i

a(i)Re[eiωit]

Unifom continuous string of length L

The equation of motion (wave equation): ∂2ψ
∂x2

= 1
v2
∂2ψ
∂t2

0 ≤ x ≤ L v =
√
τ/ρ

Normal frequencies: ωn = nπv
L

General solution:
∞∑
n=1

(βn cosωnt+ γn sinωnt) sin
nπx
L

Orthogonality of sin and cos functions on (0, L) interval

L∫
0

sin nπx
L

sin mπx
L
dx = L

2
δnm

L∫
0

cos nπx
L

cos mπx
L
dx = L

2
δnm

L∫
0

sin nπx
L

cos mπx
L
dx = 0

Fourier transform

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

Lorentz transform

x′ = x−vt√
1−v2/c2

y′ = y z′ = z t′ = t−vx/c2√
1−v2/c2

Transformation of velocities in Special Relativity

u′x =
ux−v

1−vux/c2 u′y =
uy

γ(1−vux/c2) u′z =
uz

γ(1−vux/c2) where γ ≡ 1√
1−v2/c2

Useful integrals∫ √
x2 ± a2 dx = 1

2

(
x
√
x2 ± a2 ± a2 ln

∣∣x+√
x2 ± a2

∣∣)+ C∫ √
a2 − x2 dx = 1

2

(
x
√
a2 − x2 + a2 arctan

[
x√

a2−x2

])
+ C∫

dx
x2+a2

= 1
a
arctan x

a
+ C, a ̸= 0∫

dx
x2−a2 = 1

2a
ln
∣∣x−a
x+a

∣∣+ C, a ̸= 0



∫
dx√
x2−a2 = ln

(
x+

√
x2 − a2

)
+ C = arccosh x

a
+ C, a ̸= 0∫

dx√
x2+a2

= ln
(
x+

√
x2 + a2

)
+ C, a ̸= 0∫

dx√
a2−x2 = arcsin x

a
+ C, a ̸= 0


