PHYS 451: Quantum Mechanics I Homework #3, due Thursday September 11, in class

- 1. Consider a particle in an infinite square box of length a. Assume that initially the particle is in the ground state. Then suddenly, at time $t = 0^+$, the box is expanded instantaneously to the length of 2a.
 - (a) Find the coefficients of $\psi(x, t = 0^+)$ in the basis of the eigenstates of the new box (of length 2a).
 - (b) Will the system ever return to its initial state, and if so, at which time?
- 2. Consider the wavepacket:

$$\psi(x) = A \exp\left[ik_0x - \frac{(x-x_0)^2}{4\sigma^2}\right],$$

where A, k_0 , x_0 , and σ are some real constants.

- (a) Determine the normalization factor, A.
- (b) Find the wave function in the momentum space, $\psi(k)$.
- (c) Calculate $\langle x \rangle$, $\langle x^2 \rangle$, and Δx .
- (d) Calculate $\langle p \rangle$, $\langle p^2 \rangle$, and Δp .
- (e) Calculate the probability current, j(x)
- 3. Demonstrate that

$$\delta(x) = \lim_{\epsilon \to 0^+} \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2}$$

is a valid representation of the Dirac delta function. Namely, show that

(a) $\int_{-\infty}^{+\infty} \delta(x) f(x) dx = f(0)$ for any reasonably "nice" function f(x).

(b)
$$\delta(x) = \delta(-x)$$
.

- (c) $x\delta(x) = 0.$
- (d) $\delta(cx) = \frac{1}{|c|}\delta(x).$
- (e) $\delta'(-x) = -\delta'(x)$.
- (f) $x\delta'(x) = -\delta(x)$.