PHYS 451: Quantum Mechanics I Homework #5, due Thursday September 25, in class

- 1. Consider the following operators and determine whether they are linear or not:
 - (a) Multiplication operator, \hat{M}_a : $\hat{M}_a f(x) = a f(x)$ (a is a constant)
 - (b) Exponentiation operator, \hat{E} : $\hat{E}f(x) = e^{f(x)}$
 - (c) Differentiation operator, \hat{D}_x : $\hat{D}_x f(x) = \frac{\partial f(x)}{\partial x}$
 - (d) Integration operator, \hat{S}_x : $\hat{S}_x f(x) = \int_0^x f(x') dx'$
 - (e) Addition operator, \hat{A}_a : $\hat{A}_a f(x) = f(x) + a$ (a is a constant)
 - (f) Translation operator, \hat{T}_a : $\hat{T}_a f(x) = f(x+a)$ (a is a constant)
 - (g) Inversion operator, \hat{I} : $\hat{I}f(x) = f(-x)$
 - (h) Complex conjugation operator, \hat{C} : $\hat{C}f(x) = f^*(x)$
 - (i) Operator that projects out the odd part, \hat{O} : $\hat{O}f(x) = \frac{1}{2}[f(x) f(-x)]$
 - (j) Operator that computes the absolute value, \hat{N} : $\hat{N}f(x) = |f(x)|$
 - (k) Operator that squares the argument, \hat{Q} : $\hat{Q}f(x) = f(x^2)$
- 2. Problem 3.4 in Griffiths.
- 3. Problem 3.5 in Griffiths.
- 4. Consider a particle that moves in 1D with Hamiltonian $\hat{H} = \frac{p^2}{2m} + V(x)$. Show that the uncertainties of Δp_x and ΔE obey the following inequality:

$$\Delta p_x \Delta E \ge \frac{\hbar}{2} \left| \left\langle \frac{\partial V}{\partial x} \right\rangle \right|.$$

What does it imply for stationary states?

5. Show that the standard deviation $\Delta \hat{A} = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$ vanish only when the wave function is an eigenfunction of \hat{A} . (*Hint*: let $\psi = \sum_i c_i \psi_i$, where ψ_i are eigenfunctions of \hat{A} , i.e. $\hat{A}\psi_i = \alpha_i\psi_i$)