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PHYS 451: Quantum Mechanics I – Spring 2016
Instructor: Sergiy Bubin

Final Exam

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. A particle of mass m moves in the symmetric potential

V (x) = −α
[
δ(x− b) + δ(x+ b)

]
,

where α and b are positive constants and δ(x) is the Dirac delta function. Find the ground
state wave function and the transcendental equation that relates the corresponding energy to
the values of α and b. What is the energy in the limit b→ 0?

Problem 2. Consider the potential in the form of a step function:

V (x) =

{
0, x ≤ 0,
V0 x > 0.

Given that the incident particles come from the left calculate the reflection coefficient for the
case when E > V0.

Problem 3. Using the formalism of the creation and annihilation operators, find the explicit
matrix form of operators x̂, p̂, and Ĥ in the basis of eigenstates of the harmonic oscillator.

Problem 4. Consider a 1D quantum harmonic oscillator with the Hamiltonian

Ĥ =
p̂2

2m
+
mω2x̂2

2

and a set of two operators

X̂ = x̂ cosωt− p̂

mω
sinωt

P̂ = x̂mω sinωt+ p̂ cosωt.

(a) Do these operators commute with Ĥ?

(b) How do their expectation values evolve with time?

(c) Do you find the results in parts (a) and (b) contradicting each other? Explain.

Problem 5. The electron in a hydrogen atom is in the following state

ψ = R21(r)

[√
1

3
Y 0
1 (θ, ϕ)χ+ − i

√
2

3
Y 1
1 (θ, ϕ)χ−

]
,

where the traditional notations are used: Rnl are the radial components of the hydrogen wave
functions, Y m

l are spherical harmonics, and χ± is the spin part of the wave function. Assuming
that J = L + S is the total angular momentum of the electron, give answers to the following
questions:

(a) If you measured L2, what values you might get and with what probability?

(b) Same for Lz

(c) Same for S2

(d) Same for Sz

(e) Same for J2

(f) Same for Jz



(g) If you measured the position of the particle, what would be the probability density for
finding it at r, θ, ϕ?

(h) If you measured simultaneously both the z component of the spin and the distance
from the origin (note that these two observables are compatible), what would be the
probability density for finding the particle with spin up and at radius r?

Problem 6. An electron moves along the y-axis through a uniform magnetic field that is also
directed along the y-axis, B = Bey. At time t = 0 its spin state is χ(0) = χ− (notations χ+

and χ− stand for the states with a positive or negative projection of the spin on the z-axis).

(a) What is χ(t) for t > 0?

(b) What would be the expectation values for measurements of the observables Sx, Sy, and
Sz?



Appendix: formula sheet

The Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin

(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂R

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µB B · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x+ a) = eiKaψ(x)

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1√
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp



Useful integrals∫
x sin(αx) dx = sin(αx)

α2 − x cos(αx)
α∫

x2 sin(αx) dx = 2x sin(αx)
α2 − (α2x2−2) cos(αx)

α3∫
x3 sin(αx) dx =

3(α2x2−2) sin(αx)
α4 − x(α2x2−6) cos(αx)

α3∫
x4 sin(αx) dx =

4x(α2x2−6) sin(αx)
α4 − (α4x4−12α2x2+24) cos(αx)

α5

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


