PHYS 451: Quantum Mechanics I - Spring 2016 Homework #5, due March 10, in class

Creation and annihilation operators, commutators, formalism

- 1. Using the formalism of the creation/annihilation operators $(a^{\dagger} \text{ and } a)$ compute the following general matrix elements in the basis of harmonic oscillator functions $\psi_n(x)$:
 - (a) $\langle \psi_n | x | \psi_m \rangle$
 - (b) $\langle \psi_n | x^2 | \psi_m \rangle$
 - (c) $\langle \psi_n | p | \psi_m \rangle$
 - (d) $\langle \psi_n | p^2 | \psi_m \rangle$

Then find how the uncertainty principle holds for state n, i.e. compute $\Delta x \Delta p$ for state ψ_n .

Hint: first express x and p in terms of a^{\dagger} and a, then recall from lecture how a^{\dagger} and a act on the eigenfunctions of the Hamiltonian.

2. The orbital angular momentum operator is defined as

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \hat{x} & \hat{y} & \hat{z} \\ \hat{p}_x & \hat{p}_y & \hat{p}_z \end{vmatrix},$$

where |...| stands for the determinant and \mathbf{e}_i are unit vectors. Find commutators:

- (a) $[\hat{L}_x, \hat{L}_x]$
- (b) $[\hat{L}_{x}, \hat{L}_{y}]$
- 3. Consider a particle that moves in 1D with Hamiltonian $\hat{H} = \frac{p^2}{2m} + V(x)$. Show that the uncertainties of Δp_x and ΔE obey the following inequality:

$$\Delta p_x \Delta E \ge \frac{\hbar}{2} \left| \left\langle \frac{\partial V}{\partial x} \right\rangle \right|.$$

What does it imply for stationary states?

- 4. Determine if the following operators are linear, hermitian, nonhermitian, or antihermitian (an operator \hat{O} is called antihermitian if $\hat{O}^{\dagger} = -\hat{O}$):
 - (a) Scaling operator: $\hat{S}_{\alpha}f(x) = \sqrt{\alpha}f(\alpha x)$ ($\alpha > 0$)
 - (b) $\hat{x}\hat{p}_x$
 - (c) $i(\hat{A}\hat{B} \hat{B}\hat{A})$, if it is known that $\hat{A}^{\dagger} = \hat{A}$ and $\hat{B}^{\dagger} = \hat{B}$
 - (d) $\hat{C} \hat{C}^{\dagger}$
 - (e) $\alpha \hat{x} \beta \frac{d}{dx}$ $(\alpha, \beta > 0)$
 - (f) Projection operator on some given state $|\alpha\rangle$

5. Prove the following operator relation: $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \dots$