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PHYS 451: Quantum Mechanics I – Spring 2016
Instructor: Sergiy Bubin

Midterm Exam #2

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive no
credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1.

(a) Consider the ground state of a hydrogen-like atom with Z = 2. If the distance between
the electron and nucleus were measured, what would be the most likely outcome of this
measurement?

(b) Suddenly something happens to the nucleus and Z becomes 1 (the change occurs at the
time scale that is much faster than the time scale of the electronic motion in the atom).
What is the probability that the system remains in the ground state?

Problem 2.

(a) By considering the rate of change of operator xpx derive the virial theorem in 1D:

2⟨T ⟩ =
⟨
x
∂V

∂x

⟩
,

where T and V are the kinetic and potential energy respectively.

(b) Generalize the theorem to the 3D case, i.e. consider operator r · p

(c) A particle of mass m moves in a central potential V (r) = α ln r
r0
, where α and r0 are some

positive constants. Using the result obtained in part (b) show that for any eigenstate of
the system with such a potential the mean square “velocity” (v = p/m) is the same and
find the expression for it.

Problem 3.

(a) Consider a particle with spin 1. Find the matrix representation of operators Sx, Sy, and
Sz.

(b) If the Hamiltonian of a particle with spin 1 is (A and B are some constants)

H = ASz +BS2
x,

what are the energies of this system?

Problem 4. Consider an electron in a uniform magnetic field B = (0, 0, B). A measurement at
time t = 0 gave the positive projection of the spin on the z-axis. What is the state vector for the
spin at t > 0? What is the average spin polarization (i.e. expectation value) along the x-direction
at t > 0?



Appendix: formula sheet

The Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin

(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 +

√
n δk,n−1

)
Equation for the radial component of the wave function of a particle moving in a

spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂R

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,

The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics



Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on the
z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Electron in a magnetic field

Hamiltonian: H = e
m
B · S = µB B · σ µB = eh̄

2m

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1√
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp



Useful integrals∫
x sin(αx) dx = sin(αx)

α2 − x cos(αx)
α∫

x2 sin(αx) dx = 2x sin(αx)
α2 − (α2x2−2) cos(αx)

α3∫
x3 sin(αx) dx =

3(α2x2−2) sin(αx)
α4 − x(α2x2−6) cos(αx)

α3∫
x4 sin(αx) dx =

4x(α2x2−6) sin(αx)
α4 − (α4x4−12α2x2+24) cos(αx)

α5

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


