PHYS 451: Quantum Mechanics I - Spring 2017 Homework #1, due Thursday January 19 in class

Review of elementary probability theory

- 1. Suppose you have two independent measurements of some physical quantity. Let us call the results of these measurements X_1 and X_2 . The quantity is known to lie in the interval [0, 1] and is uniformly distributed in this interval. What is the probability that
 - (a) $X_1 + X_2 < 1/2$
 - (b) $X_1 X_2 < 1/2$
 - (c) $|X_1 X_2| < 1/2$
 - (d) $\max(X_1, X_2) < 1/2$
 - (e) $\min(X_1, X_2) < 1/2$
 - (f) $X_1 < 1/2$ and $1 X_2 < 1/2$ (both conditions are satisfied)
- 2. Suppose a physical quantity m may take integer values in the range

$$-M,\ldots,M$$

where M is some positive integer. Each value is known to be equally probable.

- (a) Find probability P(m)
- (b) What is the average value $\langle m \rangle$?
- (c) What is the variance $\langle m^2 \rangle$?
- (d) What is the uncertainty Δm ?

To make the exercise more fun I ask you to evaluate all sums by yourselves (i.e. do not use reference books or web)

3. Suppose that the wave function of a particle is given by

$$\psi(x,t) = A \frac{e^{ikx - \nu(t-t_0)}}{\sqrt{b^2 + x^2}},$$

where A, b, k, ν , and t_0 are some real numbers.

- (a) Find the normalization constant, A
- (b) What is the most probable position of the particle?
- (c) What is the average position of the particle, $\langle x \rangle$?
- (d) What is uncertainty in the position of the particle, Δx ?