PHYS 451: Quantum Mechanics I - Spring 2017 Homework #5, due Thursday February 23 in class

Creation and annnihilation operators, commutation relations, the uncertainty principle, matrix formalism

- 1. Using the formalism of the creation and annihilation operators $(a^{\dagger} \text{ and } a)$ compute the following general matrix elements in the basis of harmonic oscillator functions $\psi_n(x)$:
 - (a) $\langle \psi_n | x | \psi_m \rangle$
 - (b) $\langle \psi_n | x^2 | \psi_m \rangle$
 - (c) $\langle \psi_n | p | \psi_m \rangle$
 - (d) $\langle \psi_n | p^2 | \psi_m \rangle$

Then find how the uncertainty principle holds for state n, i.e.

(e) compute $\Delta x \Delta p$ for state ψ_n .

Hint: first express x and p in terms of a^{\dagger} and a, then recall from lecture how a^{\dagger} and a act on the eigenfunctions of the Hamiltonian.

2. Consider two $n \times n$ matrices P and X (n is a *finite* number). Can they satisfy the canonical commutation relation

$$[P,X] = -i\hbar I$$

where I is the identity matrix? If so, give an example how these matrices may look like.

- 3. Consider a particle that moves in 1D with Hamiltonian $\hat{H} = \frac{p^2}{2m} + V(x)$.
 - (a) Show that the uncertainties of Δp_x and ΔE obey the following inequality:

$$\Delta p_x \Delta E \ge \frac{\hbar}{2} \left| \left\langle \frac{\partial V}{\partial x} \right\rangle \right|.$$

- (b) What does it imply for stationary states?
- 4. Problem 3.38 in Griffiths