Angular momentum

1. State $|\psi\rangle$ is an eigenstate of $\hat{\mathbf{L}}^2$ and \hat{L}_z , i.e.

 $\hat{\mathbf{L}}^2 |\psi\rangle = \hbar^2 l(l+1) |\psi\rangle$ and $\hat{L}_z |\psi\rangle = \hbar m |\psi\rangle$

Find $\langle \hat{L}_x \rangle$ and $\langle \hat{L}_x^2 \rangle$ in this state.

Hint: it may be helpful to take into account the symmetry with respect to x *and* y*.*

2. A spinless particle has the following wave function:

$$\psi = A(x+y+2z)e^{-\beta r},$$

where A and β are positive constants and $r = \sqrt{x^2 + y^2 + z^2}$.

- (a) What is the total angular momentum of the particle?
- (b) What is the expectation value of the z-component of the angular momentum?
- (c) What are the probabilities of getting $+2\hbar$ and $+\hbar$ and 0 upon measuring the z-component of the angular momentum?
- (d) What is the probability of finding the particle at angles θ and ϕ (azimuthal and polar angle respectively) in solid angle $d\Omega$?
- 3. The operator describing a rotation around the *y*-axis by $\pi/2$ has the form $\hat{R}_y(\pi/2) = e^{-i\frac{\pi}{2}\frac{\hat{L}_y}{\hbar}}$. Prove the rotation operator relation

$$\hat{R}_y(-\pi/2)\,\hat{L}_z\,\hat{R}_y(\pi/2) = -\hat{L}_x.$$

Now generalize this result for an arbitrary rotation angle ϕ , i.e. find

$$\hat{R}_y(-\phi)\,\hat{L}_z\,\hat{R}_y(\phi)$$

4. A beam of particles (all in the same state) is subject to a simultaneous measurement of two observables: \mathbf{L}^2 and L_z . The measurement yields two pairs of values:

l = 0, m = 0 with probability 3/4,

- l = 1, m = -1 with probability 1/4.
- (a) Determine the state of the beam immediately before the measurement
- (b) If the particles in the beam with l = 1, m = -1 are separated out and subjected to a measurement of L_x , what would be the possible outcomes and the corresponding probabilities of such a measurement?