PHYS 451: Quantum Mechanics I - Spring 2017 Homework #9, due Thursday April 13 in class

Addition of angular momenta, electron in magnetic field, identical particles

1. What are the Clebsch-Gordan coefficients involved in the expansion of the following states:

 $|2211\rangle$, $|2111\rangle$, $|2011\rangle$, $|2-111\rangle$, $|2-211\rangle$?

Here $|l m l_1 l_2\rangle$ stands for a state with a definite value of the total angular momentum (l) and its projection on the z-axis (m) formed by two particles that have orbital angular momenta l_1 and l_2 .

Hint: You might want to use the ladder operators, $\hat{L}_{\pm} = \hat{L}_{1\pm} + \hat{L}_{2\pm}$.

- 2. A neutral atom has a single valence electron that is bound in a state with orbital angular momentum quantum number l = 1.
 - (a) What are possible eigenvalues of \hat{L}^2 and \hat{L}_z ?
 - (b) What is the value of the spin angular momentum quantum number, s? What are the possible eigenvalues of \hat{S}^2 and \hat{S}_z ?
 - (c) The magnetic moment for the neutral atom is $\boldsymbol{\mu} = -\frac{e}{2m_e}(\mathbf{L} + 2\mathbf{S})$. What are possible eigenvalues of $\hat{\mu}_z$ for this atom?
 - (d) Suppose a beam of these atom is sent through a Stern-Gerlach apparatus. How many parallel beams will emerge?
- 3. Problem 4.33 in Griffiths.
- 4. Two non-interacting particles of mass m are in an infinite square well (0 < x < a) and occupy single particle eigenstates ψ_k and ψ_n respectively. Find the probability that both particles are *simultaneously* found in the left half of the well. Consider three cases:
 - (a) The particles are distinguishable
 - (b) The particles are identical bosons
 - (c) The particles are identical fermions