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PHYS 451: Quantum Mechanics I – Spring 2018
Instructor: Sergiy Bubin

Final Exam

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. Consider a 1D quantum harmonic oscillator. At time t = 0, it is in the state

|ψ(t = 0)⟩ = 1√
3

(
|1⟩+ |2⟩+ |3⟩

)
,

where |n⟩ is the n-th energy eigenstate. Find the expectation value of the position and energy
at time t.

Problem 2. In the questions below {|1⟩, |2⟩, |3⟩, |4⟩} are basis kets that span some Hilbert
space H, while a and b are some complex constants. Are the following operators Hermitian in
H?

(a) |1⟩⟨2|+ i|2⟩⟨1|
(b) |1⟩⟨1|+ |2⟩⟨2|+ |3⟩⟨4|+ |4⟩⟨3|

(c)
(
a|1⟩+ b∗|2⟩

)†(
b|1⟩ − a∗|2⟩

)
|3⟩⟨2|+ |4⟩⟨4|

(d) |1⟩⟨1|+ i|2⟩⟨1| − i|1⟩⟨2|+ |2⟩⟨2|
Let |ψ⟩ be some normalized ket in H and 1̂ is the identity operator. Is the following operator
a projection operator?

(e) Â = 1√
2

(
1̂ + |ψ⟩⟨ψ|

)
Let Î be the inversion operator, whose action on an arbitrary function f(x) is defined as
Îf(x) = f(−x). Find the explicit form (i.e. simplify) the following operator

(f) exp(iπÎ)

Find the Hermitian conjugate of the following operator

(g) d5

dx5

Assuming the case of a spin 1/2 particle, find the explicit matrix form of the following operator
in the basis of eigenstates of Ŝz

(h) Projection operator on the state with the positive projection of spin on the y-axis

Problem 3. Consider a particle of mass m in 3D that is constrained to move freely between
two concentric impermeable spheres of radii a and b (a < b). Find the ground state energy and
normalized wave function. You can use any knowledge about the properties of ground state
wave functions to simplify your work, but make sure to clearly explain what it is.

Problem 4. The Hamiltonian for a spin 1 system is given by

Ĥ = αŜ2
z + β(Ŝ2

x − Ŝ2
y),

where α and β are real constants. Find the allowed energies and the corresponding eigenstates
for this system.

Problem 5. Consider a finite 1D well that can support only a single bound state |g(x)⟩ that is
well separated in energy from the continuum states. The energy of this bound state is ε. Now
two more such wells are added – one on the right and one on the left, both at distanse a from
the center. Use the method of linear combination of atomic orbitals (LCAO) to estimate the
energy levels of a particle in this potential created by the three wells. For simplicity, assume
that the overlap between two neighbouring “atomic” states g(x) and g(x ± a) is is small yet
finite. At the same time the overlap between states g(x − a) and g(x + a) is negligibly small.
You can also introduce some notations to simplify your calculations, e.g.

ε ≡ ⟨g(x)|Ĥ|g(x)⟩, β ≡ ⟨g(x− a)|Ĥ|g(x)⟩,
where Ĥ is the Hamiltonian of a single well located in the center.



Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin

(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom (a = a0
Z

= 4πϵ0h̄
2

mZe2
)

En = − m
2h̄2

(
Ze2

4πϵ0

)2
1
n2 = − h̄2

2ma2
1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Relation between coupled and uncoupled representations of states formed by two

subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

|j1m1⟩ |j2m2⟩ =
j1+j2∑

J=|j1−j2|
⟨JMj1j2|j1m1j2m2⟩ |J M j1 j2⟩ M = m1 +m2

Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µBB · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x) = eikxu(x), where u(x+ a) = u(x) Equivalent form: ψ(x+ a) = eikaψ(x)

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals



∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)


