PHYS 451 Quantum Mechanics I (Spring 2018) Homework #2, due Thursday Feb 1 in class

Wave function, expectation values, Heisenberg uncertainty principle, particle in a box

- 1. Consider a particle of mass m in an infinite square well $(-b \le x \le b;$ where b is a positive constant).
 - (a) What are the energies, E_i , and eigenstates, ψ_i , of the particle?
 - (b) Suppose the initial state of the particle is given by

$$\Psi(x,t=0) = \begin{cases} C(b-|x|), & -b \le x \le b \\ 0, & |x| \ge b \end{cases}$$

where C is a constant. If a measurement of the energy is made at t > 0, what is the probability that the values E_1 , E_2 , and E_3 are obtained?

2. Consider the ground state wave function of the harmonic oscillator given by

$$\psi_0(x) = Ce^{-\alpha x^2/2}$$

where $\alpha = \frac{m\omega}{\hbar}$ (*m* is the mass and ω is the angular frequency of the oscillator).

- (a) Find the normalization constant, C.
- (b) Compute the expectation values of the position, momentum, and their squares, i.e. $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, and $\langle p^2 \rangle$.
- (c) Verify that the Heisenberg uncertainty principle holds for this state.
- 3. A particle of mass m moves in the harmonic oscillator potential. Its initial state is given by

$$\Psi(x,0) = A[4\phi_0(x) - 3i\phi_1(x)],$$

where ϕ_0 and ϕ_1 are the ground and first excited state wave functions of the oscillator.

- (a) Is $\Psi(x,t)$ is a stationary state? Explain why.
- (b) Determine the normalization constant A.
- (c) Write out $\rho(x,t) = |\Psi(x,t)|^2$. Make it clear that $\rho(x,t)$ is a nonnegative function.
- (d) Will the system ever return to its initial state, and if so, at what time?
- (e) Compute $\langle H \rangle$
- (f) Compute $\langle x \rangle$
- (g) Compute $\langle p \rangle$
- 4. A particle of mass m moves in the following potential:

$$V(x) = \frac{kx^2}{2} - ax.$$

Find the energies and eigenstates of the particle.