Transmission and reflection of a particle, Raising and lowering operators, Commutators

1. Find the transmission and reflection coefficients for the potential in the form of a step-function:

\[V(x) = \begin{cases}
0, & x < 0 \\
V_0, & x \geq 0
\end{cases} \]

where \(V_0 > 0 \). Assume that the particle is incident from the left and the energy of the particle is greater than \(V_0 \). Examine the limiting cases \(E \to V_0 \) and \(E \to \infty \).

2. Using the formalism of the raising and lowering operators \((a^\dagger, a)\) compute the following general matrix elements in the basis of harmonic oscillator functions \(\psi_n(x) \):

(a) \(\langle \psi_n | x | \psi_m \rangle \)
(b) \(\langle \psi_n | x^2 | \psi_m \rangle \)
(c) \(\langle \psi_n | p | \psi_m \rangle \)
(d) \(\langle \psi_n | p^2 | \psi_m \rangle \)

Then find how the uncertainty principle holds for state \(n \), i.e.

(e) compute \(\Delta x \Delta p \) for state \(\psi_n \).

Hint: first express \(x \) and \(p \) in terms of \(a^\dagger \) and \(a \), then recall from lecture how \(a^\dagger \) and \(a \) act on the eigenfunctions of the Hamiltonian.

3. The orbital angular momentum operator is defined as

\[\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}} = \begin{vmatrix}
e_x & \ne_y & \ne_z \\
\hat{x} & \hat{y} & \hat{z} \\
\hat{p}_x & \hat{p}_y & \hat{p}_z \end{vmatrix}, \]

where \(|...|\) stands for the determinant and \(\ne_x \) are unit vectors. The kinetic energy operator is given by:

\[\hat{T} = \frac{\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2}{2m} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right). \]

Find the following commutators:

(a) \([\hat{x}, \hat{p}_x]\)
(b) \([\hat{x}, \hat{p}_y]\)
(c) \([\hat{y}, \hat{p}_x]\)
(d) \([\hat{p}_x, \hat{p}_y]\)
(e) \([\hat{x}, \hat{T}]\)
(f) \([\hat{p}_x, \hat{T}]\)
(g) \([\hat{x}, \hat{L}_x]\)
(h) \([\hat{x}, \hat{L}_y]\)
(i) \([\hat{x}, \hat{L}_z^2]\)
(j) \([\hat{x}, \hat{L}_y^2]\)
(k) \([\hat{L}_x, \hat{L}_x]\)
(l) \([\hat{L}_x, \hat{L}_y]\)

Found an error or need a clarification? Email the instructor at sergiy.bubin@nu.edu.kz