PHYS 451 Quantum Mechanics I (Spring 2018) Homework #4, due Thursday Feb 15 in class

Transmission and reflection of a particle, Raising and lowering operators, Commutators

1. Find the transmission and reflection coefficients for the potential in the form of a stepfunction:

$$V(x) = \begin{cases} 0 & , x < 0 \\ V_0 & , x \ge 0 \end{cases},$$

where $V_0 > 0$. Assume that the particle is incident from the left and the energy of the particle is greater than V_0 . Examine the limiting cases $E \to V_0$ and $E \to \infty$.

- 2. Using the formalism of the raising and lowering operators $(a^{\dagger} \text{ and } a)$ compute the following general matrix elements in the basis of harmonic oscillator functions $\psi_n(x)$:
 - (a) $\langle \psi_n | x | \psi_m \rangle$
 - (b) $\langle \psi_n | x^2 | \psi_m \rangle$
 - (c) $\langle \psi_n | p | \psi_m \rangle$
 - (d) $\langle \psi_n | p^2 | \psi_m \rangle$

Then find how the uncertainty principle holds for state n, i.e.

(e) compute $\Delta x \Delta p$ for state ψ_n .

Hint: first express x and p in terms of a^{\dagger} and a, then recall from lecture how a^{\dagger} and a act on the eigenfunctions of the Hamiltonian.

3. The orbital angular momentum operator is defined as

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \hat{x} & \hat{y} & \hat{z} \\ \hat{p}_x & \hat{p}_y & \hat{p}_z \end{vmatrix},$$

where |...| stands for the determinant and \mathbf{e}_i are unit vectors. The kinetic energy operator is given by:

$$\hat{T} = \frac{\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2}{2m} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right).$$

Find the following commutators:

- (a) $[\hat{x}, \hat{p}_x]$
- (b) $[\hat{x}, \hat{p}_y]$
- (c) $[\hat{y}, \hat{p}_x]$
- (d) $[\hat{p}_x, \hat{p}_y]$
- (e) $[\hat{x}, \hat{T}]$
- (f) $[\hat{p}_x, \hat{T}]$
- (g) $[\hat{x}, \hat{L}_x]$
- (b) $[\hat{x}, \hat{L}_y]$
- (11) [a, 2y]
- (i) $[\hat{x}, \hat{L}_x^2]$
- (j) $[\hat{x}, \hat{L}_{y}^{2}]$
- (k) $[\hat{L}_x, \hat{L}_x]$
- (l) $[\hat{L}_x, \hat{L}_y]$