Particle in an infinite square well (Particle in 1D box)

The potential in the form of a square well serves as a good model/approximation for more realistic interaction. The importance of the square well potential also stems from the fact that this potential allows an analytic solution. There are only a few cases/potentials for which the 1D Schrödinger equation can be solved analytically and the solutions can be written in a simple compact form.

The square well potential has the following simple form:

\[V(x) = \begin{cases} V_0, & 0 \leq x \leq a \\ 0, & \text{otherwise} \end{cases} \]

The time-independent Schrödinger equation is

\[-\frac{h^2}{2m} \frac{d^2\psi}{dx^2} + V(x)\psi = E\psi \]

Our task is to find the allowed values of \(E \) and the corresponding wave functions, \(\psi \). For simplicity we will be concerned with the limiting case when \(V_0 \to \infty \). In this case
\(\psi(x) \) must vanish everywhere outside \([0,a] \) interval. That is we must require that

\[
\psi(0) = \psi(a) = 0
\]

Within interval \([0,a] \) the Schrödinger equation (SE) takes a particularly simple form in this interval:

\[
-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} = E\psi
\]

or

\[
\psi'' + \kappa^2 \psi = 0 \quad \text{where} \quad \kappa = \sqrt{\frac{\sqrt{2mE}}{\hbar^2}}
\]

The latter is a well known harmonic oscillator equation. The general solution of this equation is

\[
\psi(x) = Fe^{i\kappa x} + Ge^{-i\kappa x} = C \cos(\kappa x + \phi) = A \sin \kappa x + B \cos \kappa x
\]

Where \(F, G, C, \phi, A, \) and \(B \) are some integration constants. We will stick to the last form as it is more convenient for our purposes:

\[
\psi(x) = A \sin \kappa x + B \cos \kappa x
\]

Since \(\psi(0) = 0 \) we must set \(B \) to zero. Then

\[
\psi(a) = A \sin ka = 0 \implies ka = n\pi \quad n = 0, 1, 2, \ldots
\]

If \(n = 0 \) then we are left with a trivial solution \(\psi = 0 \), so we discard this case as physically meaningless. For \(\kappa \) we have the relation
\[k = \frac{n\pi}{a} \quad n = 1, 2, 3 \]

If only certain \(k_n \) values are allowed then the energy is also "quantized":

\[E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2ma^2} \]

Now let us turn our attention to the wave function

\[\psi_n(x) = A_n \sin \left(\frac{n\pi x}{a} \right) \]

To find \(A_n \) we use the normalization condition:

\[
1 = \int_{-\infty}^{+\infty} |\psi(x)|^2 \, dx = \int_{0}^{a} |A_n|^2 \sin^2 (k_n x) \, dx = \\
= \int_{0}^{a} |A_n|^2 \left(1 - \cos \left[2k_n x \right] \right) \, dx = |A_n|^2 \frac{a}{2}
\]

So

\[A_n = \sqrt{\frac{2}{a}} \]

It turns out that \(A_n \) is independent of \(n \) (usually the normalization constant for the solution of the SE does depend on the quantum number \(n \)).

There are important properties of eigenfunctions \(\psi_n \) that should be outlined. Some of these properties are general and hold for any form of potential \(V(x) \):

1) \(\psi_n(x) \) are either symmetric or antisymmetric with respect to the middle point of the potential well. This results from the symmetry of \(V(x) \).
2) ψ_{n+1} has one more node than ψ_n. This is related to property 3).

3) Functions ψ_n and ψ_m are orthogonal when $n \neq m$. Indeed,

$$\int_0^a \psi_n^*(x) \psi_m(x) \, dx = \frac{2}{a} \int_0^a \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi x}{a} \right) \, dx =$$

$$= \frac{2}{a} \int_0^a \frac{1}{2} \left[\cos \left(\frac{m-n \pi x}{a} \right) - \cos \left(\frac{m+n \pi x}{a} \right) \right] \, dx =$$

$$= \left[\frac{1}{(m-n)\pi} \sin \left(\frac{m-n \pi x}{a} \right) - \frac{1}{(m+n)\pi} \sin \left(\frac{m+n \pi x}{a} \right) \right]_0^a = 0 \text{ if } m \neq n.$$

For $m = n$ we get 1. Therefore we can write

$$\int_0^a \psi_n^*(x) \psi_n(x) \, dx = \delta_{mn}$$

4) Set of functions ψ_n is called complete because any function $f(x)$ (at least those that have proper physical behavior and are relevant to quantum mechanics) can be expanded as a linear combination in terms of ψ_n.

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_n \sin \left(\frac{n \pi x}{a} \right)$$

In our particular case of the infinite square well potential we basically get a Fourier series coefficients c_n are found as follows:

$$c_n = \int_0^a \psi_n^*(x) f(x) \, dx$$
If we need to write an arbitrary time-dependent solution to the SE we must specify the initial state, \(\psi(x, t=0) \). Then

\[
C_h = \sqrt{\frac{2}{a}} \int_0^a \sin \left(\frac{\pi n}{a} x \right) \psi(x, 0) \, dx
\]

and

\[
\psi(x, t) = \sum_{h=1}^{\infty} C_h \sqrt{\frac{2}{a}} \sin \left(\frac{\pi h}{a} x \right) e^{-\frac{i E_h t}{\hbar}}
\]

5) \[\sum_{h=1}^{\infty} |C_h|^2 = 1 \quad \text{Indeed,} \]

\[
1 = \int |\psi(x, 0)|^2 \, dx = \int (\sum_{w=1}^{\infty} c_w^* \psi_w(x))(\sum_{h=1}^{\infty} c_h \psi_h(x)) \, dx = \\
= \sum_{h, k=1}^{\infty} c_w^* c_h \int \psi_w^*(x) \psi_h(x) \, dx = \sum_{w, h=1}^{\infty} c_w^* c_h \delta_{wh} = \sum_{h=1}^{\infty} |C_h|^2
\]
Wave functions and probability densities for the lowest four states of a particle in an infinite potential well.