The hydrogen-like atom

In the previous lecture we learned that for a particle moving in a spherically symmetric potential $V(r) = V(1r^1)$ variables can be separated. The solution for the angular part

$$
\frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d Y}{d \theta} + \frac{\ell^2 Y}{\ell \ell^* + \ell^* \ell} = -\ell (\ell + 1) Y
$$

are spherical harmonics $Y_{\ell m}(\theta, \phi)$ — complex functions that have two indices (quantum numbers): ℓ and m.

Now we turn to the radial part of the Schrödinger equation

$$
\frac{d}{dr} \left(R \frac{d R}{dr} \right) - \frac{2m}{\hbar^2} \left[V(r) - E \right] R = \frac{\ell (\ell + 1)}{r^2} R
$$

It is convenient to make a substitution

$$
R(r) = \frac{u(r)}{r} \quad \text{or} \quad u(r) = r R(r)
$$

This way the radial equation gets reduced to a more familiar form:

$$
- \frac{\hbar^2}{2m} \frac{d^2 u}{dr^2} + \left[V(r) + \frac{\ell^2}{2m} \frac{\ell (\ell + 1)}{r^2} \right] u = E u
$$

It is essentially the same 1D Schrödinger equation we had to deal before in this course. The only difference is that we now have an "effective" potential

$$
V_{\text{eff}}(r) = V(r) + \frac{\ell^2}{2m} \frac{\ell (\ell + 1)}{r^2}
$$
This effective potential contains an extra repulsive term \(\frac{\hbar^2}{2m} \ell (\ell+1) \). It effectively "pushes" the particle away from the center \((r=0)\). In a way it is analogous to the effect of the centrifugal force.

Remember that the normalization condition for \(R(r) \) was

\[
\int_0^\infty |R(r)|^2 r^2 dr = 1
\]

For \(u(r) \) it becomes

\[
\int_0^\infty |u(r)|^2 dr = 1
\]

Now let us use the explicit form of \(V(r) \) that corresponds to two interacting Coulomb particles with charges \(-e\) (electron) and \(+Ze\) (proton):

\[
V(r) = -\frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r}
\]

With that we have

\[
-\frac{\hbar^2}{2m} \frac{d^2 u}{dr^2} + \left[-\frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r} + \frac{\hbar^2}{2m} \ell (\ell+1) \right] u = Eu
\]

In fact in this equation should actually be replaced by \(m = \frac{m_e m_p}{m_e + m_p} \) — the reduced mass of an electron (rather than just the mass of the electron).

This can be seen if we consider a system of two particles with coordinates \(\vec{r}_e \) and \(\vec{r}_p \). This system of two particles is reduced to a system of just one particle of reduced mass \(\tilde{m} \).
Let us now introduce the notation \(x = \sqrt{\frac{-2mE}{\hbar}} \) where \(E \) is negative (we consider the bound states only). Then

\[
\frac{1}{x^2} \frac{d^2u}{dx^2} = \left[1 - \frac{mZe^2}{2\pi\varepsilon_0 \hbar^2 x} \frac{1}{x} + \frac{\ell(\ell+1)}{(x\pi)^2} \right] u
\]

As always we want to work in "natural" units. The substitution

\[
p = x\pi \quad p_0 = \frac{me^2Z}{2\pi\varepsilon_0 \hbar^2 x}
\]

reduces the above equation to

\[
\frac{d^2u}{dp^2} = \left[1 - \frac{p_0}{p} + \frac{\ell(\ell+1)}{p^2} \right] u
\]

Now we will apply the power series method, which we already used when solving the SE for quantum harmonic oscillator.

When \(p \to \infty \), our equation becomes

\[
\frac{d^2u}{dp^2} = u
\]

whose solution is \(Ae^{-p} + Be^{p} \). Since we are concerned with square integrable solutions, only the \(e^{p} \) term makes sense. Thus \(u(p) \sim Ae^{-p} \), \(p \to \infty \)

At small \(p \), the centrifugal term dominates

\[
\frac{d^2u}{dp^2} = \frac{\ell(\ell+1)}{p^2} u
\]

The general solution is \(Cp^{\ell+1} + Dp^{-\ell} \). Again, we require square integrability, and hence \(\ell = 0 \)

\[
u(p) \sim Cp^{\ell+1}
\]
Now we make a substitution

\[u(p) = p^e e^{-p} v(p) \]

\[\frac{du}{dp} = p^e e^{-p} \left[(e+1-p) v + p \frac{dv}{dp} \right] \]

\[\frac{d^2 u}{dp^2} = p^e e^{-p} \left\{ [-2e-2+p + \frac{e(e+1)}{p}] v + 2(e+1-p) \frac{dv}{dp} + p \frac{d^2 v}{dp^2} \right\} \]

and obtain the following equation for \(v(p) \)

\[p \frac{d^2 v}{dp^2} + 2(e+1-p) \frac{dv}{dp} + \left[p_0 - 2(e+1) \right] v = 0 \]

Assuming the solution as a power series

\[v(p) = \sum_{j=0}^{\infty} c_j p^j \]

\[\frac{dv}{dp} = \sum_{j=0}^{\infty} j c_j p^{j-1} = \sum_{i=0}^{\infty} (i+1) c_{i+1} p^i \]

\[\frac{d^2 v}{dp^2} = \sum_{i=0}^{\infty} j(j+1) c_{j+1} p^{j-1} \]

Plugging it into the equation yields

\[\sum_{j=0}^{\infty} j(j+1) c_{j+1} p^j + 2(e+1) \sum_{j=0}^{\infty} (j+1) c_{j+1} p^j - 2 \sum_{j=0}^{\infty} j c_j p^j + \left[p_0 - 2(e+1) \right] \sum_{j=0}^{\infty} c_j p^j = 0 \]

or

\[j(j+1) c_{j+1} + 2(e+1)(j+1) c_{j+1} - 2 j c_j + [p_0 - 2(e+1)] c_j = 0 \]

or

\[c_{j+1} = \frac{2(j+e+1) - p_0}{(j+1)(j+2e+2)} c_j \]

Consider the case when \(j \to \infty \)

\[c_{j+1} \approx \frac{\frac{2j}{j(j+1)}}{c_j} = \frac{2}{j+1} c_j \implies c_j = \frac{2}{j!} c_0 \]
\[u(p) = C_0 \sum_{j=0}^{\infty} \frac{2^j}{j!} p^j = C_0 e^{2p} \]

This gives \(u(p) = C_0 e^{2p} \) blows up at large \(p \).

Such a solution is not physically meaningful. So we must require that the series is finite (a polynomial)

\[C_{j_{max}} = 0 \]

\[2(j_{max} + l + 1) p_0 = 0 \]

Let us now define \(h = j_{max} + l + 1 \). Then

\[p_0 = 2h \]

\[E = -\frac{t^2 x^2}{2m} = -\frac{me^4 Z^2}{8\pi^2 \hbar^2 c^2 h^2 p_0^2} \]

The allowed energies are

\[E_n = -\left[\frac{\hbar}{2m} \left(\frac{Ze^2}{4\pi\epsilon_0} \right)^2 \right] \frac{1}{h^2} \quad h = 1, 2, 3, \ldots \]

In the literature they often introduce the natural length scale - Bohr radius: \(a_0 = \frac{\hbar^2}{4\pi Ze^2} \)

(in Gaussian units \(a_0 = \frac{\hbar}{Ze} \)). Then

\[\chi = \frac{mZe^2}{4\pi \hbar^2} \frac{1}{h} = \frac{Z}{a_0 h} \]

\[p = \chi r = \frac{Ze}{a_0 h} \]

The hydrogen-like atom wave functions are defined by three quantum numbers

- \(h \), \(l \), and \(m \)

\(h \) is called the principal quantum number
\(l \) is called the azimuthal quantum number
\(m \) is called the magnetic quantum number

Sometimes, in order to emphasize the number of radial nodes, the radial quantum number is used:
\[n = \ell + l + 1 \]

When we combine the radial component of the wave function and the angular one we get

\[\Psi_{\text{new}}(r, \theta, \phi) = R_{n\ell\mu}(r) Y_{\ell}^{m}(\theta, \phi) \]

where
\[R_{n\ell\mu}(r) = \frac{A_{n\ell\mu}}{r} e^{-\rho} \Phi_{\ell}(\rho) \]

\(A_{n\ell\mu} \) is the normalization factor.

The coefficients of the polynomial \(\Phi_{\ell}(\rho) \) are determined by the formula
\[c_{j+1} = \frac{2((j+1)\ell + 1 - n)}{(j+1)(j+2\ell+2)} c_{j} \]

In mathematics, such polynomials are known as the associated Laguerre polynomials
\[\Phi_{\ell}(\rho) = L_{n\ell-1}^{2\ell+1}(2\rho) \]

\[L_{n\ell}^{\ell}(x) = (-1)^{\ell} \left(\frac{d}{dx} \right)^{\ell} L_{n}(x) \]

\[L_{n}(x) = e^{x} \left(\frac{d}{dx} \right)^{n} (e^{-x} x^{n}) \]

Few first few associated Laguerre polynomials

\[L_{0}^{0} = 1 \quad L_{1}^{0} = 1 - x \quad L_{2}^{0} = 2 - 4x + x^2 \]

\[L_{0}^{2} = 2 \quad L_{1}^{2} = 18 - 6x \quad L_{2}^{2} = 144 - 96x + 12x^2 \]

\[L_{0}^{1} = 1 \quad L_{1}^{1} = 4 - 2x \quad L_{2}^{1} = 18 - 18x + 3x^2 \]
The ground state energy and wave function are:

\[E_1 = - \left[\frac{\mu}{2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0} \right)^2 \right] = -\frac{1}{2} \text{ Hartree} = -13.6 \text{ eV} \]

\[\psi_{100}(r, \theta, \phi) = R_{10}(r) Y_{00}^0(\theta, \phi) = \frac{Z}{\sqrt{\pi a_0^3}} e^{-\frac{Zr}{a_0}} \]

For \(n = 2 \)

\[R_{20}(r) = \frac{Z^{\frac{3}{2}}}{a_0} \left(1 - \frac{2r}{a_0} \right) e^{-\frac{Zr}{2a_0}} \]

\[R_{21}(r) = \frac{1}{2} \frac{Z^{\frac{1}{2}}}{a_0} \frac{Zr}{2a_0} e^{-\frac{Zr}{2a_0}} \]