
StudentID:

PHYS 451: Quantum Mechanics I – Spring 2018
Instructor: Sergiy Bubin

Midterm Exam 1

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. Consider a particle of mass m moving in a 1D potential of the form

V (x) = γ|x|,

where γ is a positive constant. The exact analytic solutions, En and ψn(x), where n is the
quantum number labelling states, to the corresponding Schrödinger equation are a little difficult
to obtain (although, in principle, that can be done). However, things become easier in the limit
when n → ∞. What are the expectation values of x and x2 in this limit? Express your result
through En (consider it known) and any relevant constants that appear in the Hamiltonian (i.e.
h̄, m, γ).

Problem 2. The wave function of a particle of mass m moving in 1D (−∞ ≤ x ≤ +∞) is
given by

ψ(x) = A(β − x2)e−
x2

2β ,

where A and β are some positive constants. Now if the particle’s momentum is measured, what
value will occur most often?

Problem 3.

(a) The translation operator, T̂a, is an operator that displaces a quantum mechanical system
by a finite distance a. As you may know, its explicit form is given by T̂a = e−ip̂a/h̄. What
is the adjoint operator, T̂ †

a? Knowing the latter, compute how an arbitrary potential
V (x) is changed under the transformation T̂ †

aV (x)T̂a.

(b) Compute the commutator [T̂a, V (x)]

(c) Now assume that the Hamiltonian of a system is invariant under arbitrary translations.
Show that this necessarily leads to the conservation of momentum, (i.e. the expectation
value of the momentum operator remains constant).

Problem 4. Consider a hydrogen-like atom with Z = 2 (Z defines the nuclear charge) in the
ground state.

(a) What is the most probable value of r – the distance between the nucleus and the electron?

(b) Let us assume that the nucleus is not a point particle but a tiny sphere of radius b, such
that b≪ a0, where a0 is the Bohr radius. What is the probability of finding the electron
inside the nucleus? If you wish you can make any reasonable approximation here.

(c) Suddenly, at t = 0, something happens to the nucleus and it instantaneously looses it
charge so that Z becomes 1 (you can think of some abstract decay with an emission of
a positively charged proton by the nucleus). Yet the electron continues to orbit around
the new nucleus that has Z = 1. What is the probability that the atom remains in the
ground state at t > 0?



Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin

(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom (a = a0
Z

= 4πϵ0h̄
2

mZe2
)

En = − m
2h̄2

(
Ze2

4πϵ0

)2
1
n2 = − h̄2

2ma2
,



The few first radial wave functions Rnl for the hydrogen atom

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)


