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PHYS 451: Quantum Mechanics I – Spring 2018
Instructor: Sergiy Bubin

Midterm Exam 2

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. Consider two particles with spins s1 = 1 and s2 = 1/2. For the case of S = 3/2
(Ŝ = Ŝ1 + Ŝ2 is the operator of the total spin) we have the following four eigenstates of Ŝ2 and
Ŝz:
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Express theese four states in terms of the eigenstates of Ŝ2
1 , Ŝ1z, and Ŝ

2
2 , Ŝ2z

Problem 2. A particle of spin 1 is placed in a uniform magnetic field B = (0, B, 0). The
gyromagnetic ratio that relates the particle’s spin to its magnetic moment is g. Initially, at
time t = 0, the particle is in the state with zero projection of its spin on the z-axis. What is
the probability that the particle remains in that state at t > 0?

Problem 3. Two non-interacting particles, each of mass m, are placed in an infinite square
well (0 < x < a). One particle is in the state ϕn, while the other one is in the state ϕl (n ̸= l).
Calculate the average square of the interparticle distance if

(a) the particles are distinguishable

(b) they are bosons

(c) they are fermions

Problem 4.

(a) Consider the helium atom, which has two electrons (recall that electrons are spin 1/2
fermions). If there were no Coulomb repulsion between the electrons, what would be the
total wave function for the ground state of this atom? Write it explicitly and explain
each term. What is the total energy that corresponds to that wave function? Give a
number either in atomic units (hartrees).

(b) Now consider the boron atom, which has five electrons. Again, if you ignore the inter-
electron repulsion completely, what is the total energy of the ground state? In this case
you do not need to write any wave functions, just give the energy (but explain how you
got it!).



Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin

(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
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π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)
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∂
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∂r
+
[
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2m
l(l+1)
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]
Rnl = EnlRnl

Energy levels of the hydrogen atom (a = a0
Z

= 4πϵ0h̄
2

mZe2
)
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1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom
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The few first spherical harmonics

Y 0
0 = 1√
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Y 0
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√
3
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√

3
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√
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Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Matrix form of angular momentum operators for l = 1

Lx =
1√
2
h̄

 0 1 0
1 0 1
0 1 0

 Ly =
1√
2
h̄

 0 −i 0
i 0 −i
0 i 0

 Lz = h̄

 1 0 0
0 0 0
0 0 −1


Relation between coupled and uncoupled representations of states formed by two

subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

|j1m1⟩ |j2m2⟩ =
j1+j2∑

J=|j1−j2|
⟨JMj1j2|j1m1j2m2⟩ |J M j1 j2⟩ M = m1 +m2

Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µBB · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x) = eikxu(x), where u(x+ a) = u(x) Equivalent form: ψ(x+ a) = eikaψ(x)

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions



f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)


