
Problem 1. Consider a 1D quantum harmonic oscillator of frequency ω, initially prepared
in the state |ψ⟩ = 1√

2

(
|0⟩ + |1⟩

)
, where |n⟩ stands for an egenstate corresponding to quantum

number n.

(a) Is this harmonic oscillator in a stationary state?

(b) Will the Heisenberg uncertainty principle hold at any later moment of time?

Do not just answer questions. Make sure to prove, show, or explain your point.

Solution:

(a) Because the potential (mω2x2/2) does not depend of time, the time-dependent wave function
of the system is given by

Ψ(x, t) =
1√
2
ϕ0(x)e

−iE0t/h̄ +
1√
2
ϕ1(x)e

−iE1t/h̄

=
1√
2
e−iωt/2

(
ϕ0(x) + ϕ1(x)e

−iωt
)
,

where En = h̄ω(n + 1/2), and ϕn(x) = |n⟩ are the energy eigenvalues and eigenfunctions
of the Hamiltonian, respectively. Note that ϕn(x) are real functions. In a stationary state,
the expectation values of physical observables and particle density are supposed to be time-
independent (as the term “stationary” suggests). In our case the density is

ρ = |Ψ(x, t)|2 =
1

2

(
ϕ2
0(x) + ϕ2

1(x) + ϕ0(x)ϕ1(x)e
−iωt + ϕ1(x)ϕ0(x)e

iωt
)

=
1

2

(
ϕ2
0(x) + ϕ2

1(x) + 2ϕ0(x)ϕ1(x) cosωt
)
.

Clearly, ρ depends on time. Therefore, our harmonic oscillator, inititally in state |ψ⟩, is NOT
in a stationary state.

(b) In order to see whether the Heisenberg uncertainty principle holds or not, we need to
compute the product ∆x∆p =

√
⟨x̂2⟩ − ⟨x̂⟩2

√
⟨p̂2⟩ − ⟨p̂⟩2. Let us do it, keeping in mind that

|n⟩ are real functions in the coordinate representation and p̂ is a hermitian operator, for which
⟨k|p̂|n⟩ = ⟨n|p̂|k⟩∗ = −⟨n|p̂|k⟩:

⟨Ψ|x̂|Ψ⟩ = 1

2

(
⟨0|x̂|0⟩+ ⟨1|x̂|1⟩+ 2⟨1|x̂|0⟩ cosωt

)
,

⟨Ψ|x̂2|Ψ⟩ = 1

2

(
⟨0|x̂2|0⟩+ ⟨1|x̂2|1⟩+ 2⟨1|x̂2|0⟩ cosωt

)
,

⟨Ψ|p̂|Ψ⟩ = 1

2

(
⟨0|p̂|0⟩+ ⟨1|p̂|1⟩+ 2i⟨1|p̂|0⟩ sinωt

)
,

⟨Ψ|p̂2|Ψ⟩ = 1

2

(
⟨0|p̂2|0⟩+ ⟨1|p̂2|1⟩+ 2⟨1|p̂2|0⟩ cosωt

)
.

The matrix elements of x̂, x̂2, p̂, and p̂2 in the harmonic oscillator basis are known and can
be taken from textbooks/notes (otherwise the integrals with ϕ0 and ϕ1 can be easily evaluated
using their explicit form):

⟨n|x̂|k⟩ =
√

1

2α

(√
k δn,k−1 +

√
k + 1 δn,k+1

)
,
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⟨n|x̂2|k⟩ = 1

2α

(√
k(k − 1) δn,k−2 + (2k + 1) δnk +

√
(k + 1)(k + 2) δn,k+2

)
,

⟨n|p̂|k⟩ = −ih̄
√
α

2

(√
k δn,k−1 −

√
k + 1 δn,k+1

)
,

⟨n|p̂2|k⟩ = −h̄2α
2

(√
k(k − 1) δn,k−2 − (2k + 1) δnk +

√
(k + 1)(k + 2) δn,k+2

)
,

where α ≡ mω/h̄. With that our expectation values become

⟨Ψ|x̂|Ψ⟩ = 1√
2α

cosωt , ⟨Ψ|x̂2|Ψ⟩ = 1

α
,

⟨Ψ|p̂|Ψ⟩ = −h̄
√
α

2
sinωt , ⟨Ψ|p̂2|Ψ⟩ = h̄2α .

The product ∆x∆p is then

∆x∆p =

√
1

α
− 1

2α
cos2 ωt

√
h̄2α− h̄2

α

2
sin2 ωt =

h̄

2

√
(2− cos2 ωt)(2− sin2 ωt) ≥ h̄

2
.

Thus, the Heisenberg uncertainty principle does hold for any value of time t.
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Problem 2. Some physical system has the observables that are represented by the following
operators:

A =

5 0 0
0 1 2
0 2 1

 , B =

1 0 0
0 0 3
0 3 0

 , C =

0 3 0
3 0 2
0 2 0

 , D =

1 0 0
0 0 −i
0 i 0

 .

(a) What are the possible results of the measurements of these observables?

(b) Which of these observables are mutually compatible? Find a basis of common eigenstates.

(c) Find the operator that, when acting on an arbitrary state, leaves only the component
corresponding to the positive values of observable D.

Solution:

(a) The possible results of measuring observables A, B, C, and D are the eigenvalues of the
corresponding matrices. Let us find the eigenvalues and the corresponding eigenvectors for all
four observables:

a1 = −1 , |a1⟩ =
1√
2

 0
−1
1

, a2 = 3 , |a2⟩ =
1√
2

0
1
1

, a3 = 5 , |a3⟩ =

1
0
0

,

b1 = −3 , |b1⟩ =
1√
2

 0
−1
1

, b2 = 1 , |b2⟩ =

1
0
0

, b3 = 3 , |b3⟩ =
1√
2

0
1
1

,
c1=−

√
13 , |c1⟩=

1√
26

 3

−
√
13
2

, c2=0 , |c2⟩=
1√
13

 2
0
−3

, c3=
√
13 , |c3⟩=

1√
26

 3√
13
2

,
d1 = −1 , |d1⟩ =

1√
2

0
i
1

, d2 = 1 , |d2⟩ =

1
0
0

, d3 = 1 , |d3⟩ =
1√
2

0
1
i

.
Thus, the possible results are:

A: −1, 3, 5

B: −3, 1, 3

C: − 1√
2
, 0, 1√

2

D: −1, 1, 1.

(b) By direct calculation we can determine that [A,B] = 0, i.e. operators A and B commute.
This is the only pair of operators that commute in the set of four. Thus only A and B
are mutually compatible. Because A and B are compatible, we can choose a common set of
eigenstates for them, i.e. these eigenstates are eigenstates of A and B simultaneously:

|a1, b1⟩ =
1√
2

 0
−1
1

, |a2, b3⟩ =
1√
2

0
1
1

, |a3, b2⟩ =

1
0
0

.
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(c) Here we essentially need to find a projection operator P that projects on the subspace
spanned by |d2⟩ and |d3⟩, because these two eigenvectors correspond to positive eigenvalues:

P = |d2⟩⟨d2|+ |d3⟩⟨d3| = 1− |d1⟩⟨d1| ,

P =
1√
2

0
1
i

 1√
2

(
0 1 −i

)
+

1
0
0

(
1 0 0

)
=

1

2

2 0 0
0 1 −i
0 i 1

 .
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Problem 3.

(a) Find the eigenstates of the position operator, x̂, in the coordinate representation.

(b) Now consider two particles in 1D that are stuck to each other and move with a definite
value of the total linear momentum P (= Kh̄). Write the wave function of this system in
the coordinate respresentation. You can ignore the normalization.

(c) What is the wave function of the system in the momentum representation?

(d) Suppose we measure the coordinate of the first particle and obtain a. In what state will
the second particle be left (i.e. what state will the second particle be projected onto)?

(e) Suppose we measure the momentum of the first particle and obtain p0 (= k0h̄). In what
state will the second particle be left?

Solution:

(a) Here we need to solve the equation

Âfα(x) = αfα(x),

where Â is the operator, α is its eigenvalue (labelled by α; obviously α can take any real value
as this is the position), and fα(x) is the eigenfunction corresponding to eigenvalue α. In our
case Â = x and the equation becomes

(x− α)fα(x) = 0.

By looking at this equation we can see that the solution should be zero at any point x ̸= α. On
the other hand, at point x = α the solution should not be zero (otherwise the solution would
be zero everywhere and that does not make sense). Moreover, the wave function should be
normalized. The only function that has these properties is the Dirac delta function:

fα(x) = δ(x− α),

(b) Because the particles are stuck to each other the wave function that describes their relative
motion is the Dirac delta function δ(x1 − x2). On the other hand, their motion as a whole in
1D, which is completely independent on their relative motion (essentially there is no relative
motion – the particles are stuck to each other), is characterized by a definite linear momentum
K. We know that the eigenstates of the linear momentum operator are plane waves, eiKx. In
our case x can be either x1 or x2 – it does not matter because when particles are stuck to each
other x1 = x2. Therefore, the total wave function of the system in the coordinate representation
is

⟨x1, x2|ψ⟩ ≡ ψ(x1, x2) = AeiKx1δ(x1 − x2).

This wave function cannot be normalized in the usual sense of the term (just like a plane wave
corresponding to a free motion cannot be normalized). However, it can be normalized in the
sense that we could say that there is a certain number of particles in a unit volume V , in which
case A = 1/

√
V .
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(c) To obtain the wave function in the momentum representation we need to do a Fourier
transform (in both coordinates, x1 and x2):

⟨k1, k2|ψ⟩ ≡ ψ̃(k1, k2) =
1

2π

∞∫
−∞

∞∫
−∞

ψ(x1, x2)e
−ik1x1e−ik2x2dx1dx2

=
A

2π

∞∫
−∞

∞∫
−∞

eiKx1δ(x1 − x2)e
−ik1x1e−ik2x2dx1dx2

=
A

2π

∞∫
−∞

ei(K−k1−k2)x2dx2

= Aδ(k1 + k2 −K) .

In the above expression we used the identity δ(x) = 1
2π

∫∞
−∞ eikxdk.

(d) Measuring the position of the first particle (important: measuring the position of the first
particle only, not both) and obtaining a results in the projection of the total wavefunction onto
the eigenstate |x1=a⟩ = δ(x1 − a). This yields

⟨x1=a|ψ⟩ =
∞∫

−∞

δ(x1 − a)AeiKx1δ(x1 − x2)dx1 = AeiKaδ(x2 − a) = AeiKa|x2=a⟩ .

Thus, the second particle is in the state (apart from a multiplicative constant) correspondng
to position a. This makes sense as the particles were stuck to each other.

(e) Measuring the momentum of the first particle results in the projection of the total wave-
function onto the eigenstate |k1=k0⟩ = δ(k1−k0), where we have defined k0 = p0/h̄. Note that
δ(k1 − k0) is a wave function in the momentum representation. This yields

⟨k1=k0|ψ⟩ =
∞∫

−∞

δ(k1 − k0)Aδ(k1 + k2 −K)dk1 = Aδ(k2 + k0 −K) = A|k2=K−k0⟩ .

Thus, the second particle is in the state (apart from a multiplicative constant) corresponding
to momentum K − k0 (or just −k0 if measured in the reference frame where the system as a
whole is not moving). This also makes sense because the total linear momentum of the system
must be K. Indeed, K + k0 − k0 = K.
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Problem 4. Consider two spin 1/2 particles. Suppose the operator that describes the interation
between them has the following form

V = a+ β S1 ·S2 = a+ bσ1 ·σ2,

where a, and β are real constants, b = βh̄2/4, and σ’s are Pauli spin matrices. The total spin
of the system is S = S1 + S2.

(a) Can V , S2, and Sz be measured simultaneously?

(b) Determine the matrix form of V in the uncoupled representation.

(c) Determine the matrix form of V in the coupled representation.

Make sure to indicate clearly in which order you place basis states as the matrix form of V
depends on this order.

Solution:

(a) Let us first rewrite V in a different form using the relation S2 = S2
1 + S2

2 − 2S1 ·S2 :

V = a+
β

2

(
S2 − S2

1 − S2
2

)
.

V , S2, and Sz can be measured simultaneously only if the operators commute with each other.
We know that S2 commutes with Sz (this takes place for any angular momentum). We also
know that S2 and Sz commute with a1̂ (the first term in V ). Therefore, we are left to verify
whether S2 and Sz commute with S1 ·S2 ∝ S2 − S2

1 − S2
2. Apparently they do, because

[S2,S2] = 0 , [S2,S2
1] = 0 , [S2,S2

2] = 0,

and

[Sz,S
2] = 0 , [Sz,S

2
1] = [S1z + S2z,S

2
1] = 0 , [Sz,S

2
2] = [S1z + S2z,S

2
1] = 0 .

Therefore, we can give a positive answer: yes, V , S2, and Sz can be measured simultaneously.

(b) The uncoupled basis states are products
∣∣s1= 1

2
,m1

〉 ∣∣s2= 1
2
,m2

〉
. Let us drop the obvious

constant labels s1 and s2 and denote
∣∣mi=±1

2

〉
as |±⟩. Then our four basis states |m1,m2⟩ are

|+⟩|+⟩ , |+⟩|−⟩ , |−⟩|+⟩ , |−⟩|−⟩ ,

or simply
|++⟩ , |+−⟩ , |−+⟩ , |− −⟩ .

To evaluate the second term in V , let us express S1 ·S2 through the lowering and raising
operators:

Six =
1

2

(
Si+ + Si−

)
, Siy =

1

2i

(
Si+ − Si−

)
, i = 1, 2.

S1 ·S2 = S1xS2x + S1yS2y + S1zS2z

=
1

4

(
S1+ + S1−

)(
S2+ + S2−

)
− 1

4

(
S1+ − S1−

)(
S2+ − S2−

)
+ S1zS2z

=
1

2

(
S1+S2− + S1−S2+

)
+ S1zS2z

=
h̄2

8

(
σ1+σ2− + σ1−σ2+ + 2σ1zσ2z

)
.
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Then for V we have

V = a+
b

2

(
σ1+σ2− + σ1−σ2+ + 2σ1zσ2z

)
The general formula that describes the action of the lowering and raising operators on states
|si,mi⟩ can be taken from the textbook or lecture notes and is

Si±|si,mi⟩ = h̄
√
si(si + 1)−mi(mi ± 1) |si,mi±1⟩ .

In our case of spin 1/2 particles it takes a particularly simple form:

Si+

∣∣∣+1

2

〉
= 0 , Si+

∣∣∣− 1

2

〉
= h̄

∣∣∣+1

2

〉
, Si−

∣∣∣+1

2

〉
= h̄

∣∣∣− 1

2

〉
, Si−

∣∣∣− 1

2

〉
= 0 , i = 1, 2,

of, in terms of σ’s

σi+|+⟩ = 0 , σi+|−⟩ = 2|+⟩ , σi−|+⟩ = 2|−⟩ , σi−|−⟩ = 0 , i = 1, 2.

The action of Siz (or σiz) is also known and trivial:

Siz

∣∣∣± 1

2

〉
= ± h̄

2

∣∣∣± 1

2

〉
, σiz|±⟩ = ±|±⟩ , i = 1, 2.

With that the action of V on |m1,m2⟩ is

V |++⟩ =
(
a+ b

)
|++⟩ , V |+−⟩ = (a− b)|+−⟩+ 2b|−+⟩ ,

V |−+⟩ = (a− b)|−+⟩+ 2b|+−⟩ , V |− −⟩ =
(
a+ b

)
|− −⟩ .

Multiplying these by ⟨m1,m2| on the left we can compute the elements of matrix V :

|++⟩ |+−⟩ |−+⟩ |− −⟩

⟨++ |

⟨+− |

⟨−+ |

⟨− − |



a+ b 0 0 0

0 a− b 2b 0

0 2b a− b 0

0 0 0 a+ b


(c) The coupled basis states are |s,m, s1, s2⟩, where s denotes the total spin quantum number
(possible values are s = 0, 1) and m is the quantum number of the projection of the total spin
on the z-xis (ranges from −s to s). For brevity we can also drop the obvious constant labels
s1 and s2. The four basis states are

|0 0⟩ , |1 +1⟩ , |1 0⟩ , |1−1⟩ .

Here it is convenient to adopt the form of V that involves S2:

V = a+
β

2

(
S2 − S2

1 − S2
2

)
= a+

b

2
(σ2 − σ2

1 − σ2
2) .

The action of S2 or σ2 on the basis states is

S2|s,m⟩ = h̄2s(s+ 1)|s,m⟩ σ2|s,m⟩ = 4s(s+ 1)|s,m⟩ .

S2
i |s,m⟩ = 3

4
h̄2|s,m⟩ σ2

i |s,m⟩ = 3|s,m⟩ , i = 1, 2 .
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The action of V on the basis states is then

V |s,m⟩ =
[
a+ b

(
2s(s+ 1)− 3

)]
|s,m⟩ .

With this we can easily determine the matrix form of V :

|0 0⟩ |1 +1⟩ |1−1⟩ |1−1⟩

⟨0 0|

⟨1 +1|

⟨1 0|

⟨1−1|



a− 3b 0 0 0

0 a+ b 0 0

0 0 a+ b 0

0 0 0 a+ b


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