Dirac delta function, Probability current, Transmission and reflection coefficients

1. Consider the function
 \[g(x) = \frac{a \sin^2(x/a)}{x^2}. \]
 Show that it can be a valid representation of the Dirac delta function in the limit \(a \to 0^+ \).
 Specifically, show that in this limit the following properties hold true:
 (a) \(\int_{-\infty}^{+\infty} g(x)f(x)dx = f(0) \) for any reasonably slow-changing function \(f(x) \).
 (b) \(g(x) = g(-x) \).
 (c) \(xg(x) = 0 \).
 (d) \(g(cx) = \frac{1}{|c|}g(x) \), where \(c \) is a constant.
 (e) \(g'(-x) = -g'(x) \).
 (f) \(xg'(x) = -g(x) \).

2. Consider the 1D Gaussian wave packet moving in free space
 \[\psi(x,t=0) = \frac{1}{(\pi a^2)^{1/4}} \exp \left[ibx - \frac{x^2}{2a^2} \right], \]
 where \(a \) and \(b \) are some real constants and \(a > 0 \).
 (a) Calculate the probability current \(j_x \) for every point \(x \) at time \(t = 0 \).
 (b) Calculate the probability density, \(\rho(x,t) \), explicitly for any \(t > 0 \).
 (c) Use this probability density and verify that the continuity equation holds true at \(t = 0 \).

3. Find the transmission and reflection coefficients for the potential in the form of a step-function:
 \[V(x) = \begin{cases}
 0 & , x < 0 \\
 V_0 & , x \geq 0
 \end{cases}, \]
 where \(V_0 > 0 \). Assume that the particle is incident from the left and the energy of the particle is greater than \(V_0 \). Examine the limiting cases \(E \to V_0 \) and \(E \to \infty \).