
Problem 1. Consider a particle of mass m inside an infinite square well (box) of length a
(0 < x < a). The particle is in the state

ψ(x) = A[4ϕ2(x) + 3iϕ1000(x)],

where A is a constant, and ϕn’s are eigenstates of the box.

(a) What is the average energy of the particle?

(b) What is the most probable position of the particle? You can ignore very fine details and
give an approximate answer.

(c) If the right wall of the box is suddenly moved from point x = a to x = 3a, what will be the
probability of finding the particle in the ground state of the new box? Give an approximate
numerical value of this probability (does not need to be very accurate).

Solution:

First, let us find the value of the normalization constant, A, keeping in mind that ϕn’s are
orthonormal:

1 =

a∫
0

ψ∗(x)ψ(x)dx = |A|2
a∫

0

[4ϕ2(x)− 3iϕ1000(x)][4ϕ2(x) + 3iϕ1000(x)]dx =

= |A|2
a∫

0

[16ϕ2
2(x) + 9ϕ2

1000(x)]dx = |A|2[16 + 9].

So, up to an arbitrary phase factor A = 1/5, i.e.

ψ(x) =
4

5
ϕ2(x) +

3i

5
ϕ1000(x).

(a) The probability of finding the particle in state n = 2 and n = 1000 is P2 = |4/5|2 = 16/25
and P1000 = |3i/5|2 = 9/25 respectively (the corresponding probabilities for other states are
zeros). Therefore, the average energy is

⟨E⟩ =
∞∑
n=1

PnEn = P2E2 + P1000E1000 =
16

25

22π2h̄2

2ma2
+

9

25

10002π2h̄2

2ma2
=

4500032

25

π2h̄2

ma2
.

(b) The most probable position corresponds to the maximum of the probability density, ρ(x),
which in our case is

ρ(x) = ψ∗(x)ψ(x) =
16

25
ϕ2
2(x) +

9

25
ϕ2
1000(x).

The last term in the above expression is highly oscillatory (and periodic). For practical pur-
poses, unless we are looking at extremely fine details, it can be considered constant. Hence, the
maxima of ρ(x) will be determined by the maxima of ϕ2

2(x). The latter has two equal maxima
at x = a/4 and x = 3a/4.
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(c) The probability of finding the system in the ground state of the new box (of length 3a) is
given by

P = |⟨ϕ(3a)
1 (x)|ψ(x)⟩|2 =

∣∣∣〈ϕ(3a)
1 (x)

∣∣∣4
5
ϕ
(a)
2 (x) +

3i

5
ϕ
(a)
1000(x)

〉∣∣∣2,
where ϕ

(a)
n and ϕ

(3a)
n denote the eigenstates of the original box and the new box respectively.

The calculations then yield

⟨ϕ(3a)
1 (x)|ψ(x)⟩ =

4

5

a∫
0

(√
2

3a
sin

πx

3a

)(√
2

a
sin

2πx

a

)
dx+

3i

5

a∫
0

(√
2

3a
sin

πx

3a

)(√
2

a
sin

1000πx

a

)
dx

=
4

5

(
− 18

35π

)
+

3i

5

(
− 9000

8999999π

)
.

and

P =
1

25π2

∣∣∣∣7235 +
27000i

8999999

∣∣∣∣2 = 1

25π2

[(
72

35

)2

+

(
27000

8999999

)2
]
≈ 0.017
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Problem 2. Find the probability of transmission and reflection for a particle of mass m and
energy E that encounters a potential barrier in the form V (x) = αδ(x), where δ(. . .) is the
Dirac delta function and α is a positive constant.

Solution:

See pages 5–8 in lecture #8
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Problem 3. Consider a particle of mass m moving in the harmonic oscillator potential V (x) =
mω2x2

2
. At time t = π/ω the particle’s wave function is given by B(1 +

√
αx)e−αx2/2, where

α = mω/h̄ and B is a positive constant.

(a) Find Ψ(x, t) and make sure it is properly normalized.

(b) If a measurement of the energy is made, what will be the possible outcomes and with what
probability they may occur?

(c) Compute the expectation values of the particle’s position and momentum at an arbitrary
moment of time t.

Solution:

(a) The wave function (at t = πω) contains only two terms when we represent it as an expansion
in terms of the eigenstates of the Hamiltonian, ϕn(x) :

Ψ(x, t = πω) = B(1 + αx)e−αx2/2 = B
π1/4

α1/4

(
α1/4

π1/4
e−αx2/2 +

1√
2

α3/4

π1/4

√
2xe−αx2/2

)
= B

π1/4

α1/4

(
ϕ0(x) +

1√
2
ϕ1(x)

)
. (1)

The normalization of the wavefunction obviously requires that B = α1/4

π1/4

√
2
3
and we get

Ψ(x, t = πω) =

√
2

3
ϕ0(x) +

√
1

3
ϕ1(x). (2)

Since our potential does not depend on time, we know that the general solution to the time-
dependent Schrödinger equation can be written as (up to a common phase factor):

Ψ(x, t) =
∑
n

Cnϕn(x)e
−iEnt/h̄, (3)

where En are energy eigenvalues, which for the harmonic oscillator are En = h̄ω(n + 1/2).
Matching expression (2) with expression (3) at t = π/ω gives√

2

3
ϕ0(x) +

√
1

3
ϕ1(x) = C0ϕ0(x)e

−iπ/2 + C1ϕ1(x)e
−3iπ/2.

So C0 = −i, C1 = i, and the time-dependent wave function is

Ψ(x, t) = −i
√

2

3
ϕ0(x)e

−iωt/2 + i

√
1

3
ϕ1(x)e

−3iωt/2.

(b) Possible values of energy are E0 = h̄ω/2 and E1 = 3h̄ω/2, while the corresponding proba-
bilities are

P0 =

∣∣∣∣∣−i
√

2

3

∣∣∣∣∣
2

=
2

3
,

P1 =

∣∣∣∣∣i
√

1

3

∣∣∣∣∣
2

=
1

3
.
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(c) The expectation value of x is

⟨x⟩ = ⟨Ψ(x, t)|x|Ψ(x, t)⟩

=
〈√2

3
ϕ0(x)e

−iωt/2 −
√

1

3
ϕ1(x)e

−3iωt/2
∣∣∣x ∣∣∣√2

3
ϕ0(x)e

−iωt/2 −
√

1

3
ϕ1(x)e

−3iωt/2
〉

=
2

3
⟨ϕ0|x|ϕ0⟩+

1

3
⟨ϕ1|x|ϕ1⟩ −

√
2

3
⟨ϕ0|x|ϕ1⟩e−iωt −

√
2

3
⟨ϕ1|x|ϕ0⟩eiωt.

The diagonal matrix elements of x with eigenfunctions ϕn vanish due to symmetry. The off-
diagonal matrix elements can be taken from the appendix and they are ⟨ϕ1|x|ϕ0⟩ = ⟨ϕ0|x|ϕ1⟩ =√

h̄
2mω

. With that we get

⟨x⟩ = −1

3

√
h̄

mω
(eiωt + e−iωt) = −2

3

√
h̄

mω
cosωt.

The expectation value of p̂ = −ih̄ d
dx

can be calculated directly (in a similar way as ⟨x⟩).
However, it is easier to use the relation

⟨p⟩ = m
d⟨x⟩
dt

instead. It immediately yields

⟨p⟩ = 2

3

√
h̄mω sinωt.
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Problem 4. The polarization of photons can be described by a complex vector in 2D Hilbert

space, i.e.

(
a
b

)
, where a and b are complex numbers. In particular, we can distiguish several

important cases,

|x⟩=
(
1
0

)
, |y⟩=

(
0
1

)
, |+⟩= 1√

2

(
1
1

)
, |−⟩= 1√

2

(
1
−1

)
, |R⟩= 1√

2

(
1
i

)
, |L⟩= 1√

2

(
1
−i

)
,

which correspond to the horizontal (0o), vertical (90o), diagonal (+45o, −45o), and circular
(right, left) polarization respectively. Now, suppose we prepared a beam of photons, all in
state |ψ⟩, and send it through a filter that transmits only the photons that correspond to
the horizontal polarization. The measured transmission coefficient for state |ψ⟩ is Px = 1/5.
Then we repeat the experiment with two other filters that transmit only the diagonally and
circularly polarized light. The measured transmission coefficients are P+ = 1/2 and PR = 9/10
respectively.

(a) Based on the outcomes of the experiments with filters, determine state |ψ⟩. Note that
without loss of generality you can assume that either a or b is real (because you can factor
out a common phase factor, which is arbitrary here anyway). This may simplify your
algebraic manipulations.

(b) What will be the transmission coefficient for state |ψ⟩ if we put along the path of light
all these filters together – first the filter that transmits only the horizontally polarized
light, then the filter that transmits the diagonally polarized light, and, last, the filter that
transmits the circular light with right polarization? Note that an action of a filter can be
described by the corresponding projection operator.

Solution:

(a) The action of each filter can be decribed by a projection operator Π that extracts from the
input, ψ, the component corresponding to a specific polarization, i.e.

Πx = |x⟩⟨x| =
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
,

Π+ = |+⟩⟨+| =

(
1√
2
1√
2

)(
1√
2

1√
2

)
=

1

2

(
1 1
1 1

)
,

ΠR = |R⟩⟨R| =

(
1√
2
i√
2

)(
1√
2

i√
2

)
=

1

2

(
1 −i
i 1

)
.

The transmission probabilities are given by the square of the norm of the extracted component
(we assume that ⟨ψ|ψ⟩ = 1):

Px = ⟨Πxψ|Πxψ⟩ = ⟨ψ|Πxψ⟩ = ⟨ψ|x⟩⟨x|ψ⟩ =
∣∣⟨x|ψ⟩∣∣2,

P+ = ⟨Π+ψ|Π+ψ⟩ = ⟨ψ|Π+ψ⟩ = ⟨ψ|+⟩⟨+|ψ⟩ =
∣∣⟨+|ψ⟩

∣∣2,
PR = ⟨ΠRψ|ΠRψ⟩ = ⟨ψ|ΠRψ⟩ = ⟨ψ|R⟩⟨R|ψ⟩ =

∣∣⟨R|ψ⟩∣∣2.

6



In the above formulae we used the fact for a projection operator Π† = Π and Π2 = Π. If we

denote |ψ⟩ =
(
a
b

)
, where a and b are some complex numbers then

⟨x|ψ⟩ =
(
1 0

)(a
b

)
= a,

⟨+|ψ⟩ =
(

1√
2

1√
2

)(a
b

)
=

1√
2
(a+ b),

⟨R|ψ⟩ =
(

1√
2

− i√
2

)(a
b

)
=

1√
2
(a− ib).

With that we have three conditions,

Px = |a|2 = 1

5
,

P+ =
1

2
|a+ b|2 = 1

2
,

PR =
1

2
|a− ib|2 = 9

10
,

supplemented by the normalization condition

⟨ψ|ψ⟩ = |a|2 + |b|2 = 1.

In order to solve a system of four algebraic equations,

|a|2 + |b|2 = 1, |a|2 = 1/5, |a+ b|2 = 1, |a− ib|2 = 9/5,

we will assume that a = α is real and positive (we can always achieve that by factoring out
and neglecting a common phase factor). On the other hand, we can represent b as b = β + iγ,
where β and γ are real numbers. Then the four equations become

α2 + β2 + γ2 = 1, α = 1/
√
5, (α + β)2 + γ2 = 1, (α + γ)2 + β2 = 9/5

and we can easily faind that there is only one combination of β and γ that satisfies the above
equations:

β = 0, γ = 2/
√
5 .

So our state |ψ⟩ is

|ψ⟩ = 1√
5

(
1
2i

)
.

(b) The transmission probability for the case of all three filters put together is given by

Ptot = ⟨ΠRΠ+Πxψ|ΠRΠ+Πxψ⟩ = ⟨ψ|ΠxΠ+ΠRΠRΠ+Πxψ⟩ = ⟨ψ|ΠxΠ+ΠRΠ+Πx|ψ⟩,

or
Ptot = ⟨ψ|x⟩⟨x|+⟩⟨+|R⟩⟨R|+⟩⟨+|x⟩⟨x|ψ⟩ =

∣∣⟨R|+⟩⟨+|x⟩⟨x|ψ⟩
∣∣2.

By doing all the multiplications we get

⟨R|+⟩ =
(

1√
2

− i√
2

)( 1√
2
1√
2

)
=

1

2
(1− i) ,
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⟨+|x⟩ =
(

1√
2

1√
2

)(1
0

)
=

1√
2
,

⟨x|ψ⟩ =
(
1 0

)( 1√
5

2i√
5

)
=

1√
5
,

and, finally,

Ptot =
∣∣∣ 1− i

2
√
10

∣∣∣2 = 1

20
.
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