
Problem 1. Positronium is a hydrogen-like atom in which the proton (nucleus) is replaced
with a positron. While this system is unstable against electron–positron annihilation, it lives
long enough to detect it and study its properties.

(a) What is the wavelength of the transition between the ground and first excited state (ana-
logue of the Lyman-alpha line in hydrogen) in positronium? Give your answer in nanome-
ters.

(b) What is the most probable distance between the positron and electron in the ground state
of positronium? Give your answer in meters or Angstroms.

(c) The annihilation rate in positronium, Γ, (Γ = 1/τ , where τ is the lifetime) is proportional
to the probability that the positron and electron happen to be in (nearly) the same point
in space. Suppose we know the lifetime of positronium in the ground state, τ0. What is
the lifetime of positronium in the first excited state then? Note that the first excited state
is degenerate and each state from that degenerate multiplet may have a different lifetime.
Ignore the fact that the particles have spin.

Solution:

The reduced mass in this hydrogen-like atom (denoted Ps), is µ = m1m2

m1+m2
= meme

me+me
= me

2
. This

value of the reduced mass should be put in all relevant expressions that contain µ.

(a) For the energy levels we have

En = − µe4

32π2h̄2ϵ20

1

n2
.

The energy difference between states n = 2 and n = 1 is then

∆E21 =
3µe4

128π2h̄2ϵ20
=

3mee
4

64h2ϵ20
.

The transition wavelength is

λ21 =
hc

∆E21

=
64h3ϵ20c

3mee4
≈ 243 nm.

This wavelength for Ps atom is roughly twice longer than the corresponding one for the
common hydrogen atom, 1H.

(b) The probability density distribution in the ground state of a hydrogen-like atom is given
by

ρ(r) = 4πr2|ψ100(r)| = r2|R10(r)|2,

where r2 comes from the Jacobian in the spherical coordinates. R10 is the radial wave
function,

R10(r) =
2

a3/2
e−

r
a .

In the latter expression a is the Bohr radius for Ps, a = 4πϵ0h̄
2

µe2
= 8πϵ0h̄

2

mee2
, which is twice

larger than that for 1H.



The most probable distance between the electron and positron corresponds to the maximum
of the density distribution function ρ(r):

ρ(r) ∝ r2e−
2r
a ,

(
2rmax −

2r2max

a

)
e−

2rmax
a = 0,

rmax = a ≈ 1.058×10−10 m = 1.058 Angstrom.

(c) The positron and electron happen to be in the same point in space when the distance
between them is zero, i.e. r = 0. The annihilation rate is then proportional to ρ(r=0) =
|ψ(r=0)|2. Hence,

Γgr

Γex

=
|ψgr(0)|2

|ψex(0)|2
, or τex =

|ψgr(0)|2

|ψex(0)|2
τgr .

The excited state (n = 2) is four-fold degenerate. The multiplet contains the following
states ψnlm:

ψ200, ψ211, ψ210, ψ21−1.

The wave functions corresponding to l = 1 quantum number, namely ψ211, ψ210, and ψ21−1

all vanish at r = 0. Therefore, Ps lifetime in those states will be infinite, τex = ∞ (in
reality the system will first decay to the ground state and then annihilate there). However,
for state ψ200 we have

τex =
|R10(0)|2

|R20(0)|2
τgr =

|2a−3/2|2∣∣∣ 1√
2
a−3/2

∣∣∣2 τgr = 8τgr .



Problem 2. The total wave function, which depends on both spatial (r, θ, ϕ) and spin
variables, of an electron in the hydrogen atom is given by the following expression:

Ψ = A

sinϕ sin θ r
a0
exp

[
− r

2a0

]
2 exp

[
− r

a0

]
 ,

Here A is a normalization constant and a0 is the Bohr radius. What values and with what
probabilities will be obtained if we measure

(a) Energy

(b) Square of the orbital angular momentum

(c) Projection of the orbital angular momentum on the z-axis

(d) Projection of the spin on the z-axis

(e) Projection of the total angular momentum (orbital ang. mom. + spin) on the z-axis

Solution:

In the most general case of Ψ we would need to expand it in terms of the hydrogenic wave
functions multiplied by spin-up or spin-down states. That would amount to taking integrals in
3D, which might not be trivial to compute. However, in our case Ψ has a simple form that can
be easily expressed in terms of of the hydrogenic states. Note that

R10(r) =
2

a
3/2
0

exp

[
− r

a0

]
, R21(r) =

1
√
24 a

3/2
0

r

a0
exp

[
− r

2a0

]
,

Y 0
0 (θ, ϕ) =

1√
4π
, Y 1

1 (θ, ϕ) = −1

2

√
3

2π
sin θ eiϕ, Y −1

1 (θ, ϕ) =
1

2

√
3

2π
sin θ e−iϕ,

and

sin θ sinϕ = i

√
2π

3
(Y 1

1 + Y −1
1 ).

With that our total wave function can be written as

Ψ = A

i√2π
3
(Y 1

1 + Y −1
1 )

√
24 a3/2R21

2
√
4π Y 0

0
1
2
a3/2R10

 = Aa3/2

(
i
√
16π (Y 1

1 + Y −1
1 )R21√

4π Y 0
0 R10

)
,

or simply
Ψ = Aa3/2

[
4i
√
π Y 1

1 R21χ+ + 4i
√
π Y −1

1 1R21χ+ + 2
√
π Y 0

0 R10χ−
]
,

where χ+ =

(
1
0

)
and χ− =

(
0
1

)
are spin-up and spin-down states respectively. Given that the

spherical harmonics, radial hydrogenic wave functions, and spin states χ± are normalized, we
can easily determine constant A, which yields:

Ψ =
2i

3
Y 1
1 R21χ+ +

2i

3
Y −1
1 R21χ+ +

1

3
Y 0
0 R10χ− =

2i

3
ψ211χ+ +

2i

3
ψ21−1χ+ +

1

3
ψ100χ− .

In the above expression ψnlm(r, θ, ϕ) stands for the hydrogenic wave functions corresponding to
quantum numbers n, l, and m. It can be seen that the probability of finding the system in state
ψ211χ+ is P211↑ = 4/9, in state ψ21−1χ+ is P21−1↑ = 4/9, and in state ψ100χ− is P100↓ = 1/9.
The probability of finding the system in any other state is zero. Based on this we can answer
questions (a)-(e):



(a) Possible values of energy:

1) E1 = −me

2h̄2

(
Ze2

4πϵ0

)2

= −1

2
hartree P (E1) = P100↓ =

1

9

2) E2 = −me

8h̄2

(
Ze2

4πϵ0

)2

= −1

8
hartree P (E1) = P211↑ + P21−1↑ =

8

9
.

(b) Possible values of the square of the orbital angular momentum:

1) 0 P (0) = P100↓ =
1

9
,

2) h̄21(1 + 1) = 2h̄2 P (2h̄2) = P211↑ + P21−1↑ =
8

9
.

(c) Possible values of the projection of the orbital angular momentum on the z-axis:

1) 0 P (0) = P100↓ =
1

9
,

2) + h̄ P (+h̄) = P211↑ =
4

9
,

3) − h̄ P (−h̄) = P21−1↑ =
4

9
.

(d) Possible values of the projection of the spin on the z-axis:

1) +
h̄

2
P (+h̄/2) = P211↑ + P21−1↑ =

8

9
,

2) − h̄

2
P (−h̄/2) = P100↓ =

1

9
.

(e) Possible values of the projection of the total angular momentum (the sum of orbital angular
momentum and spin) on the z-axis:

1) +
3h̄

2
P (+3h̄/2) = P211↑ =

4

9
,

2) − h̄

2
P (−h̄/2) = P21−1↑ + P100↓ =

5

9
.



Problem 3. Consider an electron in the state corresponding to the positive projection of its
spin on the z axis. Now we measure the projection of the spin on axis z′, which makes angle θ
with z. What are the probabilities of getting the positive and negative values?

Solution:

The state corresponding to the positive projection of spin on the z axis is an eigenstate of
Sz =

h̄
2
σz:

|χ+⟩ =

(
1

0

)
.

There are many possible choices for a z′ axis that makes angle θ with axis z. Most generally,
we can define a unit vector n = (sin θ cosϕ, sin θ cosϕ, cos θ). However, due to the symmetry
of the problem we can pick any specific value of ϕ. For simplicity, let us use ϕ = 0. Then
n = (sin θ, 0, cos θ). The operator corresponding to the projection of spin on axis z′ defined by
unit vector n is:

n · S =
h̄

2
n · σ =

h̄

2
(σx sin θ + σz cos θ),

or, in matrix form,

h̄

2

(
cos θ sin θ

sin θ − cos θ

)
.

The eigenvalues and the corresponding normalized eigenvectors of this 2×2 matrix are

λ+ = +
h̄

2
, |η+⟩ =

(
cos θ

2

sin θ
2

)
,

λ− = − h̄
2
, |η−⟩ =

(
sin θ

2

− cos θ
2

)
.

The expansion of state |χ+⟩ in terms of |η+⟩ and |η−⟩ (which form a complete basis) is

|χ+⟩ = |η+⟩ ⟨η+|χ+⟩︸ ︷︷ ︸
c+

+|η−⟩ ⟨η−|χ+⟩︸ ︷︷ ︸
c−

.

Absolute squares of coefficients c+ = cos θ
2
and c− = sin θ

2
give the probabilities of finding the

system in states |χ+⟩ and |χ−⟩ respectively. Therefore, the probabilities of getting the positive
and negative values when the projection of the spin on axis z′ is measured are

P+ = cos2
θ

2
,

P− = sin2 θ

2
.


