
Name:

PHYS 452 - Quantum Mechanics II (Spring 2015)
Instructor: Sergiy Bubin

Final Exam

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are attached.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive no
credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. An attractive potential in 3D does not always have bound states. The existence of
bound states may depend on the strength and range of the potential. Consider a particle of mass
m moving in the central potential V (r) = −g exp(−2br), where g and b are positive constants.
Now assume that b is fixed and use a simple exponential variational ansatz to estimate the range
of g values for which the potential definitely supports bound states.
Information that might be useful : Quartic equation (x + p)4 − qx = 0 with constants p > 0 and
q > 0 has real roots only when q > 256

27
p3.

Problem 2. Consider a two-dimensional harmonic oscillator with the Hamiltonian

H0 =
p2x
2m

+
mω2x2

2
+

p2y
2m

+
mω2y2

2

Now add an anharmonic term to H0:
H ′ = 2λx2y2

(a) Let Π be an operator that exchanges coordinates x and y. Does Π commute with H0?
Does it commute with the total Hamiltonian, H = H0 +H ′? What can you deduce about
the symmetry properties of the energy eigenfunctions of H0 and H?

(b) Using the perturbation theory calculate the energy correction for the ground state level to
first order in λ

(c) Find the first order correction in λ to the ground state wave function. Make sure you
count all nonvanishing terms. Is the behavior of the perturbed ground state wave function
consistent with your expectation from part (a)?

(d) Using the perturbation theory calculate the energy correction for the first excited energy
level to first order in λ

Problem 3. A particle of mass m moves on a ring of length L. It is subject to a potential V (x)
(0 ≤ x ≤ L), with V (0) = V (L). Here x is the coordinate specifying the position of the particle
on the ring. Assume that the particle has a sufficiently large energy, such that E > V (x) for any
value of x.

(a) Within the WKB approximation, how many degenerate states are there for each energy
eigenvalue? What is (are) the wave function(s) for the state(s) with energy E? (Do not
worry about the normalization)

(b) What is the quantization condition on the energy eigenvalue E?

(c) Assume now that the explicit form of V (x) is given by

V (x) =

{
αx, 0 ≤ x ≤ L/2

α(L− x), L/2 ≤ x ≤ L

where α is a constant. Find the energy levels for such a potential in the WKB approxima-
tion.

Problem 4. Consider a particle of mass m in an infinite square well (0 ≤ x ≤ a). At the time
t = 0 the particle is in the ground state (n = 1). Then at t > 0 a weak time-dependent external
potential is turned on

H ′(x, t) = λxe−t/τ ,

where τ is a constant. To lowest order in λ determine the following transition probabilities at
t≫ τ :



(a) P1→2

(b) P1→3

(c) P1→4

Problem 5. The structure of a crystal may be investigated by scattering particles from it.
Suppose an incident particle sees the following potential

V (r) =
∑
j

v(r−Rj),

where Rj are the positions of the scattering atoms and v(r) is the scattering potential of a single
atom. Assume that v(r) is weak.

(a) Compute the differential cross section, dσatom
dΩ

, for scattering from a single atom if v(r) =

ge−αr
2
(g and α are constants)

(b) Now consider the full potential created by all atoms. What is the differential cross section
in terms of dσatom

dΩ
?

Problem 6. Consider an electron (spin-1/2 particle) at rest. Its spin is free to rotate in response
to a time-dependent magnetic field. At t = 0 there is a magnetic field B0 in the z-direction and
the spin is aligned along the magnetic field, i.e.

|χ(0)⟩ = | ↓⟩.

Now suppose that the magnetic field is very slowly decreased to zero and then increased in the
opposite direction up to the same magnitude. In addition, there is a weak constant ambient field
in the x-direction, B′, such that |B′| ≪ |B0|. The total time-dependent magnetic field can then
be written as

B(t) =


(B′, 0, B0), t < 0

(B′, 0, B0 − βt), 0 ≤ t ≤ tf

(B′, 0,−B0), t > tf

,

where tf = 2B0/β and β is some constant.

(a) Write the Hamiltonian of the system for the period of time when the magnetic field is
changing.

(b) Use the adiabatic theorem to determine the state of the system at t > tf . Explain whether
the result would be the same if there were no ambient field B′ present.

(c) What is the condition on the parameters of the problem for the adiabatic theorem to apply?



Appendix: formula sheet

The Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin
(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 +

√
n δk,n−1

)
Equation for the radial component of the wave function of a particle moving in a

spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂R

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,

The few first radial wave functions for the hydrogen atom (a = 4πϵ0h̄
2

me2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics



Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ∓1
1 = ±

√
3
8π

sin θ e∓iϕ = ±
√

3
8π

x∓iy
r

Operators of the square of the orbital angular momentum and its projection on the
z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Electron in a magnetic field

Hamiltonian: H = e
m
B · S = µB B · σ µB = eh̄

2m

Stationary perturbation theory formulae

H = H0 + λH ′, En = E
(0)
n + λE

(1)
n + λ2E

(2)
n + . . ., ψn = ψ

(0)
n + λψ

(1)
n + λ2ψ

(2)
n + . . .

E(1)
n = H ′

nn

ψ(1)
n =

∑
m

cnmψ
(0)
m , cnm =

{
H′

mn

E
(0)
n −E(0)

m

, n ̸= m

0, n = m

E(2)
n =

∑
m̸=n

|H ′
mn|2

E
(0)
n − E

(0)
m

ψ(2)
n =

∑
m

dnmψ
(0)
m , dnm =


1

E
(0)
n −E(0)

m

(∑
k ̸=n

H′
mkH

′
kn

E
(0)
n −E(0)

k

)
− H′

nnH
′
mn(

E
(0)
n −E(0)

m

)2 , n ̸= m

0, n = m

WKB wave function

ψ(x) = C√
p(x)

exp
(
± i
h̄

∫
p(x)dx

)
, where p(x) =

√
2m(E − V (x))

Bohr-Sommerfeld quantization rules

b∫
a

p(x)dx = (n− 1
2
)πh̄ where a and b are classical turning points and n = 1, 2, 3, . . .

If the potential has vertical walls on one or both sides then the above equation becomes
b∫
a

p(x)dx = (n− 1
4
)πh̄ or

b∫
a

p(x)dx = nπh̄ respectively.



Semiclassical barrier tunneling

T ∼ exp

[
−2

b∫
a

κ(x)dx

]
κ(x) = 1

h̄

√
2m(V (x)− E)

Time-dependence of the wave function

H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, ψ(r, t) =

∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ ,

ih̄dcn(t)
dt

= λ
∑
k

H ′
nke

iωnktck(t), H ′
nk = ⟨ϕn|H ′|ϕk⟩, ωnk =

E
(0)
n −E(0)

k

h̄

Time-dependent perturbation theory formulae

If cn(t0) = δnm (e.g. ψ(r, t0) = φm(r), where φm is an egenfunction of H0) and λH ′ is small then
at time t > t0
cn(t) = c

(0)
n + λc

(1)
n + λ2c

(2)
n + . . .

where

c
(0)
n = δnm, c

(1)
n (t) = 1

ih̄

t∫
t0

H ′
nm(t

′) eiωnmt′dt′,

c
(2)
n (t) =

(
1
ih̄

)2∑
k

t∫
t0

dt′
t′∫
t0

H ′
nk(t

′)H ′
km(t

′′) eiωnkt
′
eiωkmt

′′
dt′′, . . .

Fermi’s golden rule

Transition rate: Γi→f =
2π
h̄
|H ′

fi|2 g(Ef ), Transition probability: Pi→f (t) =
2πt
h̄
|H ′

fi|2 g(Ef )

Adiabatic theorem and geometric phase

Under adiabatic change of a set of parameters {R} in a Hamiltonian H({R}), if the system
is initially (at t = 0) in the n-th nondegenerate energy eigenstate, it stays in the same energy
eigenstate as the parameters change and acquires a phase factor ψ(t) = e−iθn(t)+iγn(t)|ψn({R(t)})⟩,

where θn = 1
h̄

t∫
0

En({R(t′)})dt′ and γn(t) = i
t∫
0

⟨
ψn({R(t′)})

∣∣∣ ∂∂t′ψn({R(t′)})⟩ dt′.
Note: for the exactly degenerate states the transition amplitudes generally do not vanish, no
matter how slowly the Hamiltonian is changed.

Stationary quantum scattering

Wave function at r → ∞ : ψ(r, θ, ϕ) ≈ A
[
eikz + f(θ, ϕ) e

ikr

r

]
, k =

√
2mE
h̄

Differential cross section: dσ
dΩ

= |f(θ, ϕ)|2 Total cross section: σtot =
∫

dσ
dΩ
dΩ

Partial wave analysis

For a spherically symmetric potentials ψ(r, θ) = A

[
eikz + k

∞∑
l=0

il+1(2l + 1)al h
(1)
l (kr)Pl(cos θ)

]
f(θ) =

∞∑
l=0

(2l + 1)al Pl(cos θ) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ)

σtot = 4π
∞∑
l=0

(2l + 1)|al|2 = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl

Relation between partial wave amplitudes and phase shifts: al =
1
k
eiδl sin δl

Rayleigh formula for a plane wave expansion: eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Lippmann-Schwinger equation



ψ(r) = φ(r) + 2m
h̄2

∫
G(r, r′)V (r′)ψ(r′)dr′,

where φ(r) is the free-particle solution (incident plane wave)

and G(r, r′) = − 1
4π

eik|r−r′|

|r−r′| is the Green’s function

Born approximation

f(θ, ϕ) = − m
2πh̄2

∫
eiq·r

′
V (r′)dr′, q = k′ − k, q = 2k sin θ

2
, k = kr̂, k′ = kẑ

For spherically symmetric potentials f(θ) = − 2m
h̄2q

∞∫
0

rV (r) sin(qr)dr

Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) = 3
2
x2 − 1

2
, P3(x) = 5

2
x3 − 3

2
x, . . ., Pl(x) = 1

2ll!

(
d
dx

)l
(x2 − 1)l

Orthogonality:
1∫

−1

Pl(x)Pl′(x)dx = 2
2l+1

δll′

Spherical Bessel, Neumann, and Hankel functions

j0(x) =
sinx
x
, j1(x) =

sinx
x2

− cosx
x

, . . ., jl(x) = (−x)l
(
1
x
d
dx

)l sinx
x

n0(x) = − cosx
x

, n1(x) = − cosx
x2

− sinx
x
, . . ., nl(x) = −(−x)l

(
1
x
d
dx

)l cosx
x

h
(1,2)
l (x) = jl(x)± inl(x)

h
(1)
0 (x) = −i eix

x
, h

(1)
1 (x) =

(
− i
x2

− 1
x

)
eix, h

(1)
2 (x) =

(
− 3i
x3

− 3
x2

+ i
x

)
eix, . . .

h
(2)
0 (x) = i e

−ix

x
, h

(2)
1 (x) =

(
i
x2

− 1
x

)
e−ix, h

(2)
2 (x) =

(
3i
x3

− 3
x2

+ i
x

)
e−ix, . . .

For x≪ 1: jl(x) → 2ll!
(2l+1)!

xl, nl → − (2l)!
2ll!
x−l−1

For x≫ 1: h
(1)
l → 1

x
(−i)l+1eix, h

(2)
l → 1

x
(i)l+1e−ix

Dirac delta function
∞∫

−∞
f(x)δ(x− x0)dx = f(x0) δ(x) = 1√

2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

Useful integrals

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]


