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PHYS 452: Quantum Mechanics II – Fall 2016
Instructor: Sergiy Bubin

Final Exam

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1.

(a) Compute the best estimate of the ground state energy of a quantum system with the
potential V (x) = β|x| (β > 0) using the trial wave function in the form:

ψ(x) =

{
C
(
1− |x|

a

)
, −a < x < a

0, |x| > a

(b) Explain (be specific) why a trial wave function in the form

ψ(x) =

{
C, −a < x < a

0, |x| > a

is not a good choice for estimating the ground state energy

(c) In the spirit of part (a), give an expession for a trial wave function suitable for estimating
the energy of the first excited state. There is no need to do any calculations and produce
an estimate here, just give an expression for a trial function.

Problem 2. Consider a four-level, partially degenerate system with Hamiltonian H0. This
system is subjected to an additional interaction V . In some basis they look as follows:

H0 = a


1 0 0 0
0 1 2 0
0 2 1 0
0 0 0 1

 , V = b


0 0 0 0
0 1 1 0
0 1 0 0
0 0 0 0

 , b≪ a.

Find the energy levels of the perturbed system up to the second order in b. Make sure to
explain why you choose certian things in your calculations.

Problem 3. A spinless particle of mass m and charge q in a central field is prepared in an
s-state (l = 0, ml = 0). This state is degenerate in energy with a p-level (l = 1, ml = 1, 0,−1).
At time t = 0 an electric field

E(t) = (0, 0, E0 sinωt)

is turned on. Ignoring the existence of states other than the above-mentioned four ones, but
making no further approximations, answer the following questions:

(a) What is the Hamiltonian Ĥ ′ that describes the interaction of the particle with the electric
field?

(b) How does this Hamiltonian look like in the matrix form, in the basis of the above-
mentioned four states (you can denote them as |0 0⟩, |1 1⟩, |1 0⟩, |1−1⟩, or simply as |1⟩,
|2⟩, |3⟩, |4⟩)? Identify clearly which matrix elements vanish based on the symmetry of
the integrand. Express the non-vanishing ones in terms of ⟨i|z|j⟩.

(c) What are the occupation probabilities for each of the four states at time t?



Problem 4. A particle of mass m is free to move in one dimension in the region −a < x < a,
but it experiences harmonic forces beyond this range. The corresponding potential can be
written in the following form:

V (x) =


1
2
mω2(x+ a)2, x < −a

0, −a < x < a
1
2
mω2(x− a)2, x ≥ a

Find the approximate energy levels of the particle using the semiclassical approach. Take the
limits of your result for the case of very small and very large a and show that you get exactly
what is expected.

Problem 5. Consider an electric dipole consisting of two
opposite charges e and −e fixed at positions a and −a from
the origin (so that the separation between the two charges
is 2a). A particle of mass m and charge e with an incident
wave vector k′ that is perpendicular to the direction of the
dipole is scattered off this target. Find the scattering am-
plitude in the case when the incident energy is very high.
What are the angle(s) in xz-plane for which the differential
cross section is maximal?

Problem 6. The Schrödinger equation for a particle of mass m moving in 1D in the attractive
delta function potential

V (x) = −αδ(x) α > 0,

has a single bound state solution, ψ(x) =
√
mα
h̄
e−

mα
h̄2

|x|.

(a) What is the bound state energy?

(b) Compute the geometric phase change when α is decreased very slowly from αi to αf .

(c) Compute the dynamic phase change for the same process if α is changed at a constant
rate, i.e. dα

dt
= β.



Appendix: formula sheet

The Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin
(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µB B · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x+ a) = eiKaψ(x)

Rayleigh-Ritz variational method

ψtrial =
n∑
i=1

ciϕi Hc = ϵSc, where c =


c1
c2
...
cn

 and
Hij = ⟨ϕi|Ĥ|ϕj⟩
Sij = ⟨ϕi|ϕj⟩

Stationary perturbation theory formulae

Ĥ = Ĥ0 + λĤ ′, En = E
(0)
n + λE

(1)
n + λ2E

(2)
n + . . ., ψn = ψ

(0)
n + λψ

(1)
n + λ2ψ

(2)
n + . . .

E(1)
n = H ′

nn

ψ(1)
n =

∑
m

cnmψ
(0)
m , cnm =

{
H′

mn

E
(0)
n −E(0)

m

, n ̸= m

0, n = m

E(2)
n =

∑
m̸=n

|H ′
mn|2

E
(0)
n − E

(0)
m

ψ(2)
n =

∑
m

dnmψ
(0)
m , dnm =


1

E
(0)
n −E(0)

m

(∑
k ̸=n

H′
mkH

′
kn

E
(0)
n −E(0)

k

)
− H′

nnH
′
mn(

E
(0)
n −E(0)

m

)2 , n ̸= m

0, n = m



WKB wave function

ψ(x) = A√
p(x)

exp
[
+ i
h̄

∫
p(x)dx

]
+ B√

p(x)
exp

[
− i
h̄

∫
p(x)dx

]
, where p(x) =

√
2m(E − V (x))

Bohr-Sommerfeld quantization rules

b∫
a

p(x)dx = (n− 1
2
)πh̄ – the potential has no vertical walls at a or b

b∫
a

p(x)dx = (n− 1
4
)πh̄ – only one wall of the potential is vertical

b∫
a

p(x)dx = nπh̄ – both walls of the potential are vertical

Here a and b are classical turning points and n = 1, 2, 3, . . .

Semiclassical barrier tunneling

T ∼ exp

[
−2

b∫
a

κ(x)dx

]
κ(x) = 1

h̄

√
2m(V (x)− E)

General time-dependence of the wave function (TDSE in matrix form)

Ĥ(r, t) = Ĥ0(r) + λĤ ′(r, t), Ĥ0φn = E
(0)
n φn, ψ(r, t) =

∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ ,

ih̄dcn(t)
dt

= λ
∑
k

H ′
nke

iωnktck(t), H ′
nk = ⟨ϕn|Ĥ ′|ϕk⟩, ωnk =

E
(0)
n −E(0)

k

h̄

Time-dependent perturbation theory formulae

Ĥ(r, t) = Ĥ0(r) + λĤ ′(r, t), Ĥ0φn = E
(0)
n φn, λĤ ′ is small

ψ(r, t) =
∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ , cn(t) = c

(0)
n + λc

(1)
n + λ2c

(2)
n + . . .

If cn(t0) = δnm then at time t > t0

c
(0)
n = δnm,

c
(1)
n (t) = 1

ih̄

t∫
t0

H ′
nm(t

′) eiωnmt′dt′,

c
(2)
n (t) =

(
1
ih̄

)2∑
k

t∫
t0

dt′
t′∫
t0

H ′
nk(t

′)H ′
km(t

′′) eiωnkt
′
eiωkmt

′′
dt′′, . . .

Fermi’s golden rule

Transition probability: Pi→f (t) =
2πt
h̄
|H′

fi|2 g(Ef ), Transition rate: Γi→f =
2π
h̄
|H′

fi|2 g(Ef )
where H′

fi = ⟨φf |Ĥ′(r)|φi⟩ and g(E) is the density of states

Stationary quantum scattering

Wave function at r → ∞ : ψ(r, θ, ϕ) ≈ A
[
eikz + f(θ, ϕ) e

ikr

r

]
, k =

√
2mE
h̄

Differential cross section: dσ
dΩ

= |f(θ, ϕ)|2 Total cross section: σtot =
∫

dσ
dΩ
dΩ

Partial wave analysis



For a spherically symmetric potential ψ(r, θ) = A

[
eikz + k

∞∑
l=0

il+1(2l + 1)al h
(1)
l (kr)Pl(cos θ)

]
f(θ) =

∞∑
l=0

(2l + 1)al Pl(cos θ) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ)

σtot = 4π
∞∑
l=0

(2l + 1)|al|2 = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl

Relation between partial wave amplitudes and phase shifts: al =
1
k
eiδl sin δl

Rayleigh formula for a plane wave expansion: eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Lippmann-Schwinger equation

ψ(r) = φ(r) + 2m
h̄2

∫
G(r, r′)V (r′)ψ(r′)dr′,

where φ(r) – free-particle solution (incident wave), G(r, r′) = − 1
4π

eik|r−r′|

|r−r′| – Green’s function

Born approximation

f(θ, ϕ) = − m
2πh̄2

∫
eiq·r

′
V (r′)dr′, q = k′ − k, q = 2k sin θ

2
, k = kr̂, k′ = kẑ

For spherically symmetric potentials f(θ) = − 2m
h̄2q

∞∫
0

rV (r) sin(qr)dr

Adiabatic evolution of a particle that starts in the k-th state of a time-dependent
Hamiltonian Ĥ(t)

Ψk(r, t) = eiθk(t)eiγk(t)ψk(r, t), Ĥ(t)ψk(r, t) = Ek(t)ψk(r, t), θk(t) = − 1
h̄

t∫
0

Ek(t
′)dt′,

γk(t) = i
t∫
0

⟨ψk(r, t′)| ∂∂t′ψk(r, t
′)⟩dt′ = i

R(t)∫
R(0)

⟨ψk|∇Rψk⟩ · dR, R(t) = (R1(t), R2(t), . . . , RN(t)),

Ri(t), i = 1, . . . , N are parameters in the Hamiltinian that change with time

Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1√
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) =
3
2
x2 − 1

2
, P3(x) =

5
2
x3 − 3

2
x, . . ., Pl(x) =

1
2ll!

(
d
dx

)l
(x2 − 1)l

Orthogonality:
1∫

−1

Pl(x)Pl′(x)dx = 2
2l+1

δll′

Spherical Bessel equation

r2 d
2R(r)
dr2

+ 2r dR(r)
dr

+ [k2r2 + l(l + 1)]R(r) = 0

Spherical Bessel, Neumann, and Hankel functions



j0(x) =
sinx
x
, j1(x) =

sinx
x2

− cosx
x

, . . ., jl(x) = (−x)l
(
1
x
d
dx

)l sinx
x

n0(x) = − cosx
x

, n1(x) = − cosx
x2

− sinx
x
, . . ., nl(x) = −(−x)l

(
1
x
d
dx

)l cosx
x

h
(1,2)
l (x) = jl(x)± inl(x)

h
(1)
0 (x) = −i eix

x
, h

(1)
1 (x) =

(
− i
x2

− 1
x

)
eix, h

(1)
2 (x) =

(
− 3i
x3

− 3
x2

+ i
x

)
eix, . . .

h
(2)
0 (x) = i e

−ix

x
, h

(2)
1 (x) =

(
i
x2

− 1
x

)
e−ix, h

(2)
2 (x) =

(
3i
x3

− 3
x2

+ i
x

)
e−ix, . . .

For x≪ 1: jl(x) → 2ll!
(2l+1)!

xl, nl → − (2l)!
2ll!
x−l−1

For x≫ 1: h
(1)
l → 1

x
(−i)l+1eix, h

(2)
l → 1

x
(i)l+1e−ix

Useful integrals∫
x sin(αx) dx = sin(αx)

α2 − x cos(αx)
α∫

x2 sin(αx) dx = 2x sin(αx)
α2 − (α2x2−2) cos(αx)

α3∫
x3 sin(αx) dx =

3(α2x2−2) sin(αx)
α4 − x(α2x2−6) cos(αx)

α3∫
x4 sin(αx) dx =

4x(α2x2−6) sin(αx)
α4 − (α4x4−12α2x2+24) cos(αx)

α5∫ √
a2 − x2 dx = 1

2

(
x
√
a2 − x2 + a2 arctan

[
x√

a2−x2

])
∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

2π∫
0

cosmϕeinϕ dx = π(δm,n + δm,−n) (m,n = 0,±1,±2, ...)

Useful Fourier integrals∫
1
|r|e

−iq·rdr = 4π
|q|2

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


