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PHYS 452: Quantum Mechanics 1T — Fall 2016
Instructor: Sergiy Bubin
Midterm Exam 1

Instructions:

All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
examn.

This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

No communication with classmates is allowed during the exam.

Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

Write legibly. If I cannot read and understand it then I will not be able to grade it.

Make sure pages are stapled together before submitting your work.



Problem 1. Use a linear trial wave function (i.e. ar + b) to estimate the ground state energy
of a particle of mass m in an infinite spherical well of radius R. Make sure the linear function
satisfies the boundary conditions properly.

Problem 2. Consider a particle of mass m in a 2D square box (0 < z < a, 0 < y < a). The
system is perturbed by a weak additional potential that has the following form:

3 3
Viz) = B, %<x‘<f and § <y <,
0, otherwise.

Find the first-order energy corrections and proper zero-order wave functions for the ground and
first excited states.

Problem 3. Consider a quantum rotor constrained to rotate in a plane (let us suppose in
xy-plane). Thus, its position is defined by a single angle, ¢. The Hamiltonian of the rotor is

L2
H=-=
21’
where [ is its moment of inertia (a constant). Obviously, the wave function of the rotor must
be periodic, i.e. ¥(¢ + 2m) = (o).
(a) Determine the eigenvalues and normalized eigenfunctions of H. Are any of the energy
levels degenerate?

(b) Now add a small perturbation in the form H' = —)\cos 2¢ and compute the lowest
non-vanishing correction to the ground state energy due to that perturbation.

(c) Calculate the ground state wave function to the first order in \.

(d) Calculate the lowest non-vanishing energy correction for the first excited energy level.

Problem 4. Use the semiclassical approach to estimate the energy levels of a particle of mass
m moving in the potential V(x) = «|z|. As a sanity check, compare the dependence of E,, on n
in the limit of large n for this potential with the two cases for which exact analytic expressions
are known: the harmonic oscillator and particle in a box.



Appendiz: formula sheet
The Schrodinger equation
Time-dependent: ih%—f — HU Stationary: Hi, = Entn,
De Broglie relations
A=h/p, v=E/h or p=hk, E=hw
Heisenberg uncertainty principle

Position-momentum: Az Ap, > %  Energy-time: AEAt > 2 General: AAAB > %]([A, B))|

Probability current
ID: (o, t) = 25 (G20 — g 22)  3D: ji(r,t) = & (VY — Vi)

Time-evolution of the expectation value of an observable ()
(generalized Ehrenfest theorem)

~ N

Q) = L(H,Q]) + (22)

Infinite square well (0 <z < a)

Energy levels: E, = "2”2’32, n=12..00

2ma

Eigenfunctions: ¢, (z) = \/gsin (Z2z) (0<z<a)

a CL/Q, n==%k
Matrix elements of the position: [ ¢F(z)x ¢p(z)dz = ¢ 0, n # k; n+kis even
0 —% n#k n+kisodd

Quantum harmonic oscillator

The few first wave functions (a = %2):

dolx) = &5 ™2 (1) = V2SR w e, o(w) = J5 % (20w — 1) o2
Matrix elements of the position: (¢,|2|¢r) = /5= <\/—5nk 1+ /N0 1)
(0nl22108) = 5t (VEGR = 1D dnea + v/ + D+ 2) Sz + (26 + 1) S

Matrix elements of the momentum: (¢, |p|or) = iy/ ™% mh“ (\/_ On k-1 — /1 O 1)

Creation and annihilation operators for harmonic oscillator

Q=i+ F[:hw(ziug) N =afa @,af] = 1
it = /5 & — 5 aln) =+/nn—1) atlny =+vn+1|n+1)

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

K210 Qanl + |:V( )_i_h_Ql(lJrl)} Rnl = Eannl

“omrZor! 2m 72

Energy levels of the hydrogen atom




Aregh?

The few first radial wave functions R, for the hydrogen atom (a = 7

RlO = 2a_3/2 672 R20 = \/iia_?’/Q (1 — ér‘) e Za R21 = \/%71@_3/2 5 67i

The few first spherical harmonics

YOOZ\/% =/ cost=,/22 = /Esinfett = 5, /3 =

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

8 1 9? TNy}
s1n9 s1n290¢2:| L,= Zh8¢

L= —p’ sm9 a0
Fundamental commutation relations for the components of angular momentum
o gl ind. LAl id L] = in,
Raising and lowering operators for the z-projection of the angular momentum

Jr=J.+iJ,  Action: Ji|j,m)="h\7G+1) —m(m=E1)[j,m+1)

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j; and j

|JMj1j2>= Z Z <1m1]2m2|JM]1]2>|J1m1>|]2m2> my +mg = M

m1—f]1 m2—*j2

Pauli matrices

(01 (0 =i (10
2=\ 10 =i 0 == 0 -1

Electron in a magnetic field

Hamiltonian: H = —-pu-B=-yB-S=-B-S=uzB-o

here e > 0 is the magnitude of the electron electric charge and pug = <&

2m

Bloch theorem for periodic potentials V(z + a) = V(x)

Y(@+a) = e P(z)
Rayleigh-Ritz variational method

C1
3 © Hij = (il H|6;)
dal = Y Ci®o; Hc=¢eSc, wherec=| . and J J
Yo zzzl ¢ : Sij = (¢l ¢5)
CTL

Stationary perturbation theory formulae

H=H'+\H', E,=EY+X BV +XEP +..., ¢ =00 + 2 + 2%
EW = H'
Hl
G =3 Cunth®, = O nNFEmM
" — " 0, n=m
/ 2
En ; E,(IO) _ E(O)




WKB wave function

Y(x) = \/I%exp [+7 [ p(x)dz] + \/zTeXp [—+ [ p(z)dz], where p(z

Bohr-Sommerfeld quantization rules
[ p(x)dz = (n — 3)mh — the potential has no vertical walls at a or b
b
[ p(z)dz = (n — 1)mh — only one wall of the potential is vertical
b

[ p(z)dx = nth — both walls of the potential are vertical

a
Here a and b are classical turning points and n =1,2,3, ...

Semiclassical barrier tunneling

T ~ exp |:—2f%($)d$:| k(z) = $4/2m(V (z) — E)

Dirac delta function

Fourier transform conventions
~ +oo ) foo ‘
k) =G | fwede J@) = F= | fketdk

or, in terms of p = hk

400 ) -
= 7o J F@)e e @) = 7= f F(p)eir=/mdp

[ 1@ —wde = f(wo)  0(w) = A= [ ek 5(—) = 5(a)

= /2m(E — V(2))

§(ex) = £6(x)

g



Useful integrals

f.’ESiH(O(x) dr = Sino(é‘;x) o wcoz(a:c)

i o222-2) cos(ax
[ 2?sin(ax) de = 2“212(%) _ ig (az)

Oé2x2_ in(oz T (XQJ,‘Z— az
[ a3 sin(az) de = il ;4)5 (az) _ x( 6) cos(az)

a3

f $4 sin(ax) dr — 41(042:1:2;3) sin(au) _ (a4x4712a2:21+24) cos(azx)

f$2k€_”8x2df[‘ = \/7_T]€'22’f(+k,;'k+1/2 (RG/B > 07 k? = O, 172, )
0

Jatrtestay = Lt (Ref > 0, k=0,1,2,..)
0

[ aFemdr = ’Y’fil (Rey>0,k=0,1,2,...)
0

oe] q2
/ e~ P giary — \/ge_@ (Rep > 0)

fsin%xdx = qZE-Lu (k=0,1,2,...)

2R R
0
fsin%ﬂxd:ﬁ = 20E (b =0,1,2,..)
) k1) 1y Ly
2w
[ cosmp e dz = 7w(0pmp + Om—n) (m,n=0,+1,+2,...)
0

Useful trigonometric identities

sin(a £+ ) = sinacos £ cosasin 4 cos(a £ 3) = cos acos f F sinasin 3
sinasin 8 = 3 [cos(a — 3) — cos(a + )] cos avcos 3 = 3[cos(av — ) + cos(a + )]
sinacos § = 3[sin(a + () + sin(a — )] cosasin 8 = 3 [sin(a + () — sin(a — )]

Useful identities for hyperbolic functions

cosh?z —sinh?z = 1 tanh® x + sech®z = 1 coth?z — csch?x =1



