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PHYS 451 Quantum Mechanics II (Fall 2017)
Instructor: Sergiy Bubin
Final Exam

Instructions:

All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

No communication with classmates is allowed during the exam.

Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

Write legibly. If I cannot read and understand it then I will not be able to grade it.

Make sure pages are stapled together before submitting your work.



Problem 1. Consider a hydrogen atom with a simplified form for the hyperfine interaction
H = Hy+ A(S,-S.),

where S, and S, are the operators representing the spin of the proton and electron respectively,
and H, is the spin-independent part of the Hamiltonian. Now, assume that initially, at ¢ = 0,
the atom is in the ground state of Hy and with the proton spin up and the electron spin down,
i.e. in the state @blooxf)x(e). Do not assume that A is small.

(a) What is the wave function of the system at ¢ > 07
(b) What is the probability of finding the spin of the proton pointing down?
Problem 2. Consider a 1D harmonic oscillator of mass m and frequency w. Find the leading

relativistic correction to its ground state energy.

Problem 3. Consider a four-level system with the Hamiltonian

O = =
OO = =
_ -0 O
—_ = O

g

where € and v are some constants, and v < 1. Using the perturbation theory find the energy
levels of the system up to the second order in ~.

Problem 4. Using the Rayleigh-Ritz variational method estimate the energies of the ground
and first excited states of a particle of mass m moving in the potential V(z) = fz?. As a
variational basis employ the lowest two states of 1D harmonic oscillator with varying width of
the Gaussians.

Problem 5. A particle is incident on a central potential V' (r), which is infinitely high at r < a

and vanish at r > a, i.e.
0 >
Vi) = { , T>a

oo, r<a

Find the total cross section when the energy of the incident particle is low. Define what “low”
means in this context.

Problem 6. Consider a system with Hamiltonian H, which has no explicit dependence on
time. Initially, at ¢ = 0, the system is in the state [¢)(0)) = |¢;). Show that for small time
interval ¢ the probability of finding the system in the initial state is equal to

1 — AE*#/R* 4+ O(t*),

where AF is the energy uncertainty in the initial state.



Appendiz: formula sheet
Schrodinger equation
Time-dependent: ih%—g’ = HU Stationary: H U, = By,
De Broglie relations
A=h/p, v=E/h or p=hk, E=hw
Heisenberg uncertainty principle

Position-momentum: Az Ap, > %  Energy-time: AEAt > 2 General: AAAB > %]([A, B))|

Probability current
ID: (o, t) = 25 (28 — g 28)  3D: ji(r,t) = 2& (VY — Vi)

Time-evolution of the expectation value of an observable ()
(generalized Ehrenfest theorem)

~ N

Q) = L(H,Q]) + (22)

Infinite square well (0 <z < a)

Energy levels: E, = "2”222, n=12..00

2ma

Eigenfunctions: ¢, (z) = \/gsin (Zz) (0<z<a)

a CL/2, n==%k
Matrix elements of the position: [ ¢F(z)x ¢p(z)dz = ¢ 0, n # k; n+kis even
0 —% n#k n+kisodd

Quantum harmonic oscillator

The few first wave functions (a = %2):

do(z) = &z ™2 (x) = V2SR w e, o(w) = J5% (20wt — 1) e
Matrix elements of the position: (¢,|2|¢r) = /5= <\/—5nk 1+ /N0 1)
(6nl22108) = 5t (VEG = 1D dnea + v/ + D) +2) Sz + (26 + 1) S

Matrix elements of the momentum: (¢, |p|or) = iy/ ™% mh“ (\/_ On k-1 — /N O 1)

Creation and annihilation operators for harmonic oscillator

Q=i+ F[:hw(ziug) N =afa @, af] = 1
it = /5 & — 5 aln) =+/nn—1) atlny =+vn+1|n+1)

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V(r)

K219 Qanz + [V( )_|_ LQM} R, = E Ry

“omrZor! 2m 72

Energy levels of the hydrogen atom




dmegh?

The few first radial wave functions R, for the hydrogen atom (a = o~

-3/2r 6 — 5

R10 = 2&73/2 6_g R20 = 7§G73/2 (1 — ér) e %a Ry = \/12—46L

The few first spherical harmonics

/ / / +
Yooz\/% VP =/ cosl= /&2 b=, /Esinfet? = 5, /2 =2

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

I2— _p2 0 5inf2 + ! 3—} L.=-in

sin 9 06 st 0 02
Fundamental commutation relations for the components of angular momentum

o d)—ihd. U d) =i [ ] —ihd,

Raising and lowering operators for the z-projection of the angular momentum

Jp=J,+iJ Action: Jilj,m) =hyjG+ 1) —m(m+1)|j,m+1
Yy

Pauli matrices

(01 (0 =i (1 0
2=\ 1 0 D=\ o %2~ \ 0 -1

Matrix form of angular momentum operators for [ =1

010 0 — 0 10 0
L—%h 1 01 L—%h 1 O —1 L.=h| 0 0 O
010 0 2 O 00 -1

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j; and j

J1 J2
S Mjrj2) = >0 X2 (imajamelJ M jija) |jima) |jams) my+my =M
mi=—ji ma2=-—j2
. . J1+J2 . . . . . .
ljima) [jame) = > (JMjije|jimajoms) |J M ji ja) M =my +mq
J=[j1—j2|

Electron in a magnetic field

Hamiltonian: H =-p-B=-yB-S=-B-S=uzB-o

here e > 0 is the magnitude of the electron electric charge and pug = &

2m

Bloch theorem for periodic potentials V(z +a) =V (z)
Y(r) = e**u(z), where u(z + a) = u(x) Equivalent form: ¢(z + a) = e**)(z)
Density matrix p
p=2_pili) (Y|, where > p; =1
Expelctation value of some (;bservable A (A) = 2P (1| Ajh;) = tr(pA), where tr(p) =1

Time evolution operator



Ulty,t) = Texp |=4 [V H@dt] =143 (=3)" [V dty [ dto. . [ dtaH(0)H (L) . H ()
n=1
In particular, U(ts,t;) = exp [—%I:I(tf - tz)} when H # ]:[(t)
Schrodinger, Heisenberg and interaction pictures

i =U W, ¢y =1s(t=0), Ay =U"1AsU, ihé—f = [Ag, H] + zhagtH> % =U- %U
If H=Hy+V(t), then
vy = Uy s, Up = exp [—iﬁot} Ay = Uyt AsUy, ih%r = Viyy

t
Yr(t) = iﬁ J () dt!
Rayleigh-Ritz variational method
C1
3 €2 Hi; = <¢1‘H‘¢>
Wirial = » , ¢;0; Hc=¢€Sc, wherec= | . and J J
S : Siy = (6:l9;)
Cn

Stationary perturbation theory formulae
H=H'+ ) H', E,=EY + EY + X2EY +..., =9 + 208 + X2 +

EW = H!

n nn

H! 7£
1 § : 0 o oy, NFEM
1?7(1) = Cnml/’fn)a Cnm — { En’—Em
n

m

(2 — | mn
E" Z E(O) _ ESS)

m¥#n 1

E Aoty = & ED-ED (k;n EQ gD (E;O)_E,(,?)Q’

0, n=m

Bohr-Sommerfeld quantization rules
[ p(z)dz = (n — 1)mh — the potential has no vertical walls at a or b
b
[ p(z)dz = (n — 1)mh — only one wall of the potential is vertical

f p(z)dz = nmh — both walls of the potential are vertical

Here a and b are classical turning points and n = 1,2,3, ...

Semiclassical barrier tunneling

T ~ exp [—2 f /i(x)dx} k(z) = 1/2m(V(z) — E)

General time-dependence of the wave function (TDSE in matrix form)



_ie®)
H(I',t) = Ho(r) + )\Hl(ru t)? H0¢n = 7(10)30717 w(ra t) = ZCn(t)cpn(r)e b;l )
27(10)_E;<€0)

W@ = NSYH! et (), HY = (balH'|0r),  war = 2

k

Time-dependent perturbation theory formulae
H(r,t) = H°(r) + \H'(x, 1), Hp, = éo)gpn, AH' is small

i

_i5(0),
P, t) =S en(Bonme 7 en(t) = + A + 22 +
If ¢, (to) = Opm then at time ¢ > tgy

0510) = 5nm7

'Lwnmt /
n ~ i f dt

D)= (L)% tf dt’ f H () HL, (1) et eionnt” i,
0

Fermi’s golden rule

Transition probability: P (t) = 2%|H,|? g(Ey), Transition rate: I';; = 22 |H/,|? g(Ey)
where H'y; = (@¢|H'(r)|p;) and g(E) is the density of states

Stationary quantum scattering

Wave function at r — oo : ¥(r,0,¢) = A [6sz + f(6,¢) “"]’ L — Y2mE

h
Differential cross section: %2 = [f(9, $)|? Total cross section: oy, = [ 22dS

Partial wave analysis

For a spherically symmetric potential ¢(r,0) = A [eikz kS 20+ Dag BV (kr) Py(cos 6)

f(o) = i(Ql + 1)a; Py(cosf) = 1 i(?l + 1)e™ sin §; P;(cos )

i=0_ =0
Oror = 47 Z(Zl +1)|ay|* = (2l + 1) sin? §
=0 l,

Relation between partial wave amplitudes and phase shifts: a; = %e”l sin ¢
Rayleigh formula for a plane wave expansion: e** = >~ i'(21 + 1)j;(kr) Pj(cos 6)
1=0
Lippmann-Schwinger equation

Y(r) = o(r) + 33 [ Gr,r )V (r)y(')dr’,

where ¢(r) — free-particle solution (incident wave), G(r,r') = —% e]i‘rral — Green’s function

Born approximation

f(0.0) = =525 [V (¥)dr', q=X -k, ¢=2ksing, k=Fk} ¥ =k2

For spherically symmetric potentials f(6) = —27”2 rV (r) sin(gr)dr
0

Adiabatic evolution of a particle that starts in the k-th state of a time-dependent
Hamiltonian H ()

~ t
Wy (r, 1) = OOy (v,1),  H(t)y(r,t) = Bp()v(r,t),  Ox(t) = —4 [ Ep(t')dt’,
0
t R(?)
=i [(r (e, )| 2 u (e, 0)dt =i [ (Y| Vi) - dR,  R(t) = (Ra(t), Ra(t), .., Rn(1)),
0 R(0)
R;(t), i=1,..., N are parameters in the Hamiltinian that change with time



Dirac delta function

Z F@)8(x — wo)de = fzo)  6(x) = & Z etedl  §(—a) = d(x)  dlex) = Ho(a)
Fourier transform conventions
F0) = e [ re e f) =g T Fetds
or, in terms of p = hk
— g [ H@e e @) = o T ey

Legendre polynomials

I
Py(x) =1, P(x ) =z, Py(z) =322 -1, Py(x) =323z, ..., Px)=35; (L) (2 -1)
Orthogonality: f ) Py(x)dz = 5250w

Spherical Bessel equation
PRO) 1 0p 2RO 4 (k202 4 (14 1)]R(r) = 0

Spherical Bessel, Neumann, and Hankel functions

o) = 2, ilw) = - i) = (<o) ()

no(fﬂ):—wjx, nl(fﬁ):—%—sﬁx, . nl(a:):—(—x)l (%%)l%
(z) = (:v) + iny(z)

hé”(sc) =it @) = (h e me) = (- — — G Hi)en

M) =it W) = (oYt M) = (34 )

For z < 1: j(z) — %xl, n; — _%x—lq

For z > 1: hl(l) — %(—@')l“e”, hl(Q) — %(i)l“e_m
Useful integrals

(s )
f1va=at=air = (vi-va)

fIQkG pa? dl’—\/—ﬁkﬂlw (R€B>O,k32071,2,)

IZE2I€+16_’BI dr = %ﬁﬂiﬂl (Re/B > 07 k= 07 1727 )
0

[ aFe " de = v’ﬁl (Rey>0,k=0,1,2,...)
0

o0 q2
[ e F*clardy = \/%efE (Refs > 0)

[sin?* zde = 720 (K =0,1,2,..)

2k k!
0
i k k:+1k|
s 2k+1 _ 2 | _
fSlIl I'dl'—m (k—071,2,)
0

21
[ cosmpe™® dr = (0 p + Om,—n) (m,n=0,£1,+2, ..)
0



Useful Fourier integrals
1 —igr g, — 4m
J e =

Useful trigonometric identities

sin(a + ) = sinacos 8 & cosasin cos(a £ ) = cos acos f F sin asin 3
sinasin 8 = £[cos(a — 3) — cos(a + )] cos avcos 3 = $[cos(av — ) + cos(a + )]
sinacos § = 3 [sin(a + () + sin(a — )] cosasin 8 = 1[sin(a + () — sin(a — )]

Useful identities for hyperbolic functions

cosh?z —sinh?z =1 tanh? x + sech®z = 1 coth?z — csch?x =1



