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PHYS 452 Quantum Mechanics II (Fall 2018)
Instructor: Sergiy Bubin

Final Exam

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive no
credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1.

(a) Prove that ⟨φ|H|φ⟩ ≥ E0 for any normalized (and properly behaved) trial wave function φ,
where E0 is the ground state energy of the system with Hamiltonian H.

(b) Prove that there is always at least one bound state for an attractive potential in 1D. Here we
define an attractive potential as follows: V (x) ≤ 0 for any x, and V (x) → 0 when x→ ±∞.
Hint: use some relevant trial function with a variational parameter that defines its spatial
extent and then play with that parameter.

Problem 2. Consider a quantum rigid rotor (in 3D) in a magnetic field. The Hamiltonian of
this system can be written as

H0 = αL2 + βLz ,

where L is the angular momentum operator, Lz is the projection of the angular momentum on
the z-axis, and α and β are some positive constants. The system is subjected to an additional
perturbation in the form V = γLy, where γ is a positive constant such that γ ≪ β.

(a) What are the energies and eigenstates of H0?

(b) Using the perturbation theory find correctiontions to the energies to lowest nonvanishing
order in V .

Hint: using ladder operators might make calculations easier

Problem 3. Consider a two-level system with the Hamiltonian

H =

(
+E h(t)
h(t) −E

)
,

where h(t) is a real function such that
∫ +∞
−∞ |h(t)|dt is finite and E is a constant. Let us label

the states as

|1⟩ =
(
1
0

)
, and |2⟩ =

(
0
1

)
.

(a) At time t = −∞ the system is in the state |2⟩. Use time-dependent perturbation theory to
determine the probability that at t = +∞ the system undergoes a transition to state |1⟩, to
lowest order in h.

(b) If E = 0, the probability of a transition from |2⟩ to |1⟩ can be computed exactly. Do that
and compare it with the result obtained from time-dependent perturbation theory. What is
the condition that the perturbative result is a good approximation to the exact result?

Problem 4. The Lippmann-Schwinger formalism can be used for solving scattering problems
in 1D. The Green’s function in 1D, i.e. the solution of the nonhomogeneous Helmholtz equation[

d2

dx2
+ k2

]
G(x, x′) = δ(x− x′), k =

√
2mE

h̄

can be evaluated in a similar way as we did in lecture for 3D (you do not need to do this). For
the outward wave the result is G(x, x′) = − i

2k
eik|x−x

′|. Now, consider the case of scattering of a
particle of mass m and energy E from an attractive δ-potential:

V (x) = −αδ(x),



where α is a positive constant. Solve the Lippmann-Schwinger equation and obtain the trans-
mission and reflection amplitudes and probabilities.

Problem 5. Consider a two-level system with the following time-dependent Hamiltonian

H = ε

(
0 a(t)
a(t) 1

)
where ε is some constant that has units of energy and a(t) is given by:

a(t) =

{ √
2 et/T , t < 0

0, t > 0

Here T is some characteristic time. At t = −∞ the system begins in its ground state and then
evolves adiabatically.

(a) What is the condition on T under which the adiabaticity is well maintained until t = 0? Be
specific, do not just say T must be small or big.

(b) What is the probability that the system will be found in the excited state at t = +∞?

Problem 6.

(a) Compute the geometric phase change when an infinite square well expands adiabatically
from [0, a1] to [0, a2].

(b) Do the same for the dynamic phase change, assuming that the rate of change is constant,
i.e. da

dt
= C.



Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin
(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

|j1m1⟩ |j2m2⟩ =
j1+j2∑

J=|j1−j2|
⟨JMj1j2|j1m1j2m2⟩ |J M j1 j2⟩ M = m1 +m2

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Matrix form of angular momentum operators for l = 1

Lx =
1√
2
h̄

 0 1 0
1 0 1
0 1 0

 Ly =
1√
2
h̄

 0 −i 0
i 0 −i
0 i 0

 Lz = h̄

 1 0 0
0 0 0
0 0 −1


Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µBB · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x) = eikxu(x), where u(x+ a) = u(x) Equivalent form: ψ(x+ a) = eikaψ(x)

Density matrix ρ̂

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|, where
∑
i

pi = 1

Expectation value of some observable A: ⟨Â⟩ =
∑
i

pi⟨ψi|Â|ψi⟩ = tr(ρ̂Â), where tr(ρ̂) = 1

Time evolution operator



Û(tf , ti) = T̂ exp
[
− i
h̄

∫ tf
ti
Ĥ(t)dt

]
= 1+

∞∑
n=1

(
− i
h̄

)n ∫ tf
ti
dt1
∫ t1
ti
dt2 . . .

∫ tn−1

ti
dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn)

In particular, Û(tf , ti) = exp
[
− i
h̄
Ĥ(tf − ti)

]
when Ĥ ̸= Ĥ(t)

Schrödinger, Heisenberg and interaction pictures

ψH = Û−1ψS, ψH = ψS(t=0), ÂH = Û−1ÂSÛ , ih̄ ÂH

dt
= [ÂH , Ĥ] + ih̄∂ÂH

∂t
, ∂ÂH

∂t
≡ Û−1 ∂ÂS

∂t
Û

If Ĥ = Ĥ0 + V̂ (t), then

ψI = Û−1
0 ψS, Û0 = exp

[
− i
h̄
Ĥ0t
]
, ÂI = Û−1

0 ÂSÛ0, ih̄∂ψ̂I

∂t
= V̂IψI

ψI(t) = ψI(0) +
1
ih̄

t∫
0

V̂I(t
′)ψI(t

′)dt′

Rayleigh-Ritz variational method

ψtrial =
n∑
i=1

ciϕi Hc = ϵSc, where c =


c1
c2
...
cn

 and
Hij = ⟨ϕi|Ĥ|ϕj⟩
Sij = ⟨ϕi|ϕj⟩

Stationary perturbation theory formulae

H = H0 + λH ′, En = E
(0)
n + λE

(1)
n + λ2E

(2)
n + . . ., ψn = ψ

(0)
n + λψ

(1)
n + λ2ψ

(2)
n + . . .

E(1)
n = H ′

nn

ψ(1)
n =

∑
m

cnmψ
(0)
m , cnm =

{
H′

mn

E
(0)
n −E(0)

m

, n ̸= m

0, n = m

E(2)
n =

∑
m ̸=n

|H ′
mn|2

E
(0)
n − E

(0)
m

ψ(2)
n =

∑
m

dnmψ
(0)
m , dnm =


1

E
(0)
n −E(0)

m

(∑
k ̸=n

H′
mkH

′
kn

E
(0)
n −E(0)

k

)
− H′

nnH
′
mn(

E
(0)
n −E(0)

m

)2 , n ̸= m

0, n = m

Bohr-Sommerfeld quantization rules

b∫
a

p(x)dx = (n− 1
2
)πh̄ – the potential has no vertical walls at a or b

b∫
a

p(x)dx = (n− 1
4
)πh̄ – only one wall of the potential is vertical

b∫
a

p(x)dx = nπh̄ – both walls of the potential are vertical

Here a and b are classical turning points and n = 1, 2, 3, . . .

Semiclassical barrier tunneling

T ∼ exp

[
−2

b∫
a

κ(x)dx

]
κ(x) = 1

h̄

√
2m(V (x)− E)

General time-dependence of the wave function (TDSE in matrix form)



H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, ψ(r, t) =

∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ ,

ih̄dcn(t)
dt

= λ
∑
k

H ′
nke

iωnktck(t), H ′
nk = ⟨ϕn|H ′|ϕk⟩, ωnk =

E
(0)
n −E(0)

k

h̄

Time-dependent perturbation theory formulae

H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, λH ′ is small

ψ(r, t) =
∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ , cn(t) = c

(0)
n + λc

(1)
n + λ2c

(2)
n + . . .

If cn(t0) = δnm then at time t > t0

c
(0)
n = δnm,

c
(1)
n (t) = 1

ih̄

t∫
t0

H ′
nm(t

′) eiωnmt′dt′,

c
(2)
n (t) =

(
1
ih̄

)2∑
k

t∫
t0

dt′
t′∫
t0

H ′
nk(t

′)H ′
km(t

′′) eiωnkt
′
eiωkmt

′′
dt′′, . . .

Fermi’s golden rule

Transition probability: Pi→f (t) =
2πt
h̄
|H′

fi|2 g(Ef ), Transition rate: Γi→f =
2π
h̄
|H′

fi|2 g(Ef )
where H′

fi = ⟨φf |H′(r)|φi⟩ and g(E) is the density of states

Stationary quantum scattering

Wave function at r → ∞ : ψ(r, θ, ϕ) ≈ A
[
eikz + f(θ, ϕ) e

ikr

r

]
, k =

√
2mE
h̄

Differential cross section: dσ
dΩ

= |f(θ, ϕ)|2 Total cross section: σtot =
∫

dσ
dΩ
dΩ

Partial wave analysis

For a spherically symmetric potential ψ(r, θ) = A

[
eikz + k

∞∑
l=0

il+1(2l + 1)al h
(1)
l (kr)Pl(cos θ)

]
f(θ) =

∞∑
l=0

(2l + 1)al Pl(cos θ) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ)

σtot = 4π
∞∑
l=0

(2l + 1)|al|2 = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl

Relation between partial wave amplitudes and phase shifts: al =
1
k
eiδl sin δl

Rayleigh formula for a plane wave expansion: eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Lippmann-Schwinger equation

ψ(r) = φ(r) + 2m
h̄2

∫
G(r, r′)V (r′)ψ(r′)dr′,

where φ(r) is a free-particle solution (incident wave) andG(r, r′) = − 1
4π

eik|r−r′|

|r−r′| is Green’s function

Born approximation

f(θ, ϕ) = − m
2πh̄2

∫
eiq·r

′
V (r′)dr′, q = k′ − k, q = 2k sin θ

2
, k = kr̂, k′ = kẑ

For spherically symmetric potentials f(θ) = − 2m
h̄2q

∞∫
0

rV (r) sin(qr)dr

Adiabatic evolution of a particle that starts in the k-th state of a time-dependent
Hamiltonian Ĥ(t)

Ψk(r, t) = eiθk(t)eiγk(t)ψk(r, t), Ĥ(t)ψk(r, t) = Ek(t)ψk(r, t), θk(t) = − 1
h̄

t∫
0

Ek(t
′)dt′,

γk(t) = i
t∫
0

⟨ψk(r, t′)| ∂∂t′ψk(r, t
′)⟩dt′ = i

R(t)∫
R(0)

⟨ψk|∇Rψk⟩ · dR, R(t) = (R1(t), R2(t), . . . , RN(t)),

Ri(t), i = 1, . . . , N are parameters in the Hamiltinian that change with time



Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals∫ √
a2 − x2 dx = 1

2

(
x
√
a2 − x2 + a2 arctan

[
x√

a2−x2

])
∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

2π∫
0

cosmϕeinϕ dx = π(δm,n + δm,−n) (m,n = 0,±1,±2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


