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PHYS 452 Quantum Mechanics II (Fall 2019)
Instructor: Sergiy Bubin

Midterm Exam 2

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive no
credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. Consider an extremely slow incident particle of mass m that travels a very long
distance and then encounters a potential barrier in the form V (x) = V0e

−α|x|, where V0 and α are
some positive constants. Estimate the probability that the particle tunnels through the barrier.
What are the contstraints on the values of V0 and α so that your estimate remains meaningful?

Problem 2. Apply the WKB approximation to a particle of mass m moving in the following
“half-oscillator” potential

V (x) =

{
mω2x2

2
, x ≥ 0

∞, x < 0
.

Find the energy eigenvalues and wave functions. Compare the WKB energy eigenvalues with
the exact ones for this potential. Are they close to each other? Why yes or why not?

Problem 3. Consider a positively charged spin 1/2 particle in an external magnetic field B
that is governed by the following Hamiltonian:

H = εI − γB·S,

where S is the spin operator, γ is the particle’s gyromagnetic ratio, ε is some constant, and I is
the identity operator in spin space.

(a) If the magnetic field is constant in time and given by B = Bez (ez is a unit vector along the
z-axis), determine the possible energies and corresponding eigenstates of the system

(b) Now assume that the magnetic field is time-dependent and is given by

B =

{
Bez, t < 0

β(ex cosωt− ey sinωt) +Bez, t ≥ 0
,

where β and ω are real constants. At t = 0 the particle is in the spin-up state. Using
the time-dependent perturbation theory find the probability that the particle undergoes a
transition to the spin-down state at some later time t > 0.

(c) For what range of values of ω your result in (b) remains valid?

Problem 4. Consider a 1D quantum harmonic oscillator of mass m, charge q, and frequency ω
prepared in its ground state (n = 0) and placed inside a parallel plate capacitor. The separation
between the plates of the capacitor is D. The figure below shows the voltage applied to the
capacitor as a function of time. Essentially we have two rectangular pulses (in opposite direction),
each of duration T and amplitude Umax (you may assume that Umax is small in some sense). What
is the probability that the oscillator will be found in the second (n = 2) excited state at t = +∞?
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Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin
(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
k + 1 δn,k+1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 + (2k + 1) δnk +

√
(k + 1)(k + 2) δn,k+2

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = −i

√
mh̄ω
2

(√
k δn,k−1 −

√
k + 1 δn,k+1

)
⟨ϕn|p̂2|ϕk⟩ = −mh̄ω

2

(√
k(k − 1) δn,k−2 − (2k + 1) δnk +

√
(k + 1)(k + 2) δn,k+2

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom



En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,

The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

|j1m1⟩ |j2m2⟩ =
j1+j2∑

J=|j1−j2|
⟨JMj1j2|j1m1j2m2⟩ |J M j1 j2⟩ M = m1 +m2

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Matrix form of angular momentum operators for l = 1

Lx =
1√
2
h̄

 0 1 0
1 0 1
0 1 0

 Ly =
1√
2
h̄

 0 −i 0
i 0 −i
0 i 0

 Lz = h̄

 1 0 0
0 0 0
0 0 −1


Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µBB · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x) = eikxu(x), where u(x+ a) = u(x) Equivalent form: ψ(x+ a) = eikaψ(x)

Density matrix ρ̂

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|, where
∑
i

pi = 1

Expectation value of some observable A: ⟨Â⟩ =
∑
i

pi⟨ψi|Â|ψi⟩ = tr(ρ̂Â), where tr(ρ̂) = 1



Time evolution operator

Û(tf , ti) = T̂ exp
[
− i
h̄

∫ tf
ti
Ĥ(t)dt

]
= 1+

∞∑
n=1

(
− i
h̄

)n ∫ tf
ti
dt1
∫ t1
ti
dt2 . . .

∫ tn−1

ti
dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn)

In particular, Û(tf , ti) = exp
[
− i
h̄
Ĥ(tf − ti)

]
when Ĥ ̸= Ĥ(t)

Schrödinger, Heisenberg and interaction pictures

ψH = Û−1ψS, ψH = ψS(t=0), ÂH = Û−1ÂSÛ , ih̄ ÂH

dt
= [ÂH , Ĥ] + ih̄∂ÂH

∂t
, ∂ÂH

∂t
≡ Û−1 ∂ÂS

∂t
Û

If Ĥ = Ĥ0 + V̂ (t), then

ψI = Û−1
0 ψS, Û0 = exp

[
− i
h̄
Ĥ0t
]
, ÂI = Û−1

0 ÂSÛ0, ih̄∂ψ̂I

∂t
= V̂IψI

ψI(t) = ψI(0) +
1
ih̄

t∫
0

V̂I(t
′)ψI(t

′)dt′

Rayleigh-Ritz variational method

ψtrial =
n∑
i=1

ciϕi Hc = ϵSc, where c =


c1
c2
...
cn

 and
Hij = ⟨ϕi|Ĥ|ϕj⟩
Sij = ⟨ϕi|ϕj⟩

Stationary perturbation theory formulae

H = H0 + λH ′, En = E
(0)
n + λE

(1)
n + λ2E

(2)
n + . . ., ψn = ψ

(0)
n + λψ

(1)
n + λ2ψ

(2)
n + . . .

E(1)
n = H ′

nn

ψ(1)
n =

∑
m

cnmψ
(0)
m , cnm =

{
H′

mn

E
(0)
n −E(0)

m

, n ̸= m

0, n = m

E(2)
n =

∑
m ̸=n

|H ′
mn|2

E
(0)
n − E

(0)
m

ψ(2)
n =

∑
m

dnmψ
(0)
m , dnm =


1

E
(0)
n −E(0)

m

(∑
k ̸=n

H′
mkH

′
kn

E
(0)
n −E(0)

k

)
− H′

nnH
′
mn(

E
(0)
n −E(0)

m

)2 , n ̸= m

0, n = m

Bohr-Sommerfeld quantization rules

b∫
a

p(x)dx = (n− 1
2
)πh̄ – the potential has no vertical walls at a or b

b∫
a

p(x)dx = (n− 1
4
)πh̄ – only one wall of the potential is vertical

b∫
a

p(x)dx = nπh̄ – both walls of the potential are vertical

Here a and b are classical turning points and n = 1, 2, 3, . . .

Semiclassical barrier tunneling

T ∼ exp

[
−2

b∫
a

κ(x)dx

]
κ(x) = 1

h̄

√
2m(V (x)− E)

General time-dependence of the wave function (TDSE in matrix form)



H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, ψ(r, t) =

∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ ,

ih̄dcn(t)
dt

= λ
∑
k

H ′
nke

iωnktck(t), H ′
nk = ⟨ϕn|H ′|ϕk⟩, ωnk =

E
(0)
n −E(0)

k

h̄

Time-dependent perturbation theory formulae

H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, λH ′ is small

ψ(r, t) =
∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ , cn(t) = c

(0)
n + λc

(1)
n + λ2c

(2)
n + . . .

If cn(t0) = δnm then at time t > t0

c
(0)
n = δnm,

c
(1)
n (t) = 1

ih̄

t∫
t0

H ′
nm(t

′) eiωnmt′dt′,

c
(2)
n (t) =

(
1
ih̄

)2∑
k

t∫
t0

dt′
t′∫
t0

H ′
nk(t

′)H ′
km(t

′′) eiωnkt
′
eiωkmt

′′
dt′′, . . .

Fermi’s golden rule

Transition probability: Pi→f (t) =
2πt
h̄
|H′

fi|2 g(Ef ), Transition rate: Γi→f =
2π
h̄
|H′

fi|2 g(Ef )
where H′

fi = ⟨φf |H′(r)|φi⟩ and g(E) is the density of states

Stationary quantum scattering

Wave function at r → ∞ : ψ(r, θ, ϕ) ≈ A
[
eikz + f(θ, ϕ) e

ikr

r

]
, k =

√
2mE
h̄

Differential cross section: dσ
dΩ

= |f(θ, ϕ)|2 Total cross section: σtot =
∫

dσ
dΩ
dΩ

Partial wave analysis

For a spherically symmetric potential ψ(r, θ) = A

[
eikz + k

∞∑
l=0

il+1(2l + 1)al h
(1)
l (kr)Pl(cos θ)

]
f(θ) =

∞∑
l=0

(2l + 1)al Pl(cos θ) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ)

σtot = 4π
∞∑
l=0

(2l + 1)|al|2 = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl

Relation between partial wave amplitudes and phase shifts: al =
1
k
eiδl sin δl

Rayleigh formula for a plane wave expansion: eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Lippmann-Schwinger equation

ψ(r) = φ(r) + 2m
h̄2

∫
G(r, r′)V (r′)ψ(r′)dr′,

where φ(r) is a free-particle solution (incident wave) andG(r, r′) = − 1
4π

eik|r−r′|

|r−r′| is Green’s function

Born approximation

f(θ, ϕ) = − m
2πh̄2

∫
eiq·r

′
V (r′)dr′, q = k′ − k, q = 2k sin θ

2
, k = kr̂, k′ = kẑ

For spherically symmetric potentials f(θ) = − 2m
h̄2q

∞∫
0

rV (r) sin(qr)dr



Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals∫ √
a2 − x2 dx = 1

2

(
x
√
a2 − x2 + a2 arctan

[
x√

a2−x2

])
∫
x sin2 x dx = x2

4
− cos 2x

8
− x sin 2x

4
∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

2π∫
0

cosmϕeinϕ dx = π(δm,n + δm,−n) (m,n = 0,±1,±2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


