StudentID:

PHYS 452 Quantum Mechanics II (Fall 2019) Quiz #1

- 1. Consider a particle moving in 1D ($-\infty < x < \infty$). Suppose we can restrict a trial wave function $\phi(x)$ to be orthogonal to the exact ground state wave function, regardless of how much $\phi(x)$ is tuned. Show that in this case the trial energy will be a strict upper bound to the exact energy of the first excited state.
- 2. If a particle moves in the potential $V(x) = -Be^{-bx^4}$, where B > 0 and b > 0, what would be the most meaningful choice of a trial wave function (out of those given below) to estimate the energy of the first excited state? Explain. A and α are assumed to be real positive numbers.
 - (g) $Axe^{-\alpha x^2}$ (m) Ax^4 (a) A
 - (h) $Axe^{-\alpha x^4}$ (b) $Ae^{-\alpha x}$ (n) $Ax^4e^{-\alpha x}$ (i) Ax^2 (c) $Ae^{-\alpha x^2}$
 - (o) $Ax^4e^{-\alpha x^2}$ (d) $Ae^{-\alpha x^4}$ (j) $Ax^2e^{-\alpha x}$
 - (k) $Ax^2e^{-\alpha x^2}$ (e) Ax
 - (p) $Ax^4e^{-\alpha x^4}$ (l) $Ax^2e^{-\alpha x^4}$ (f) $Axe^{-\alpha x}$