Let \(x \) be the distance of the block from the top of the wedge and \(X \) is the distance of the wedge from some point on the table.

Kinetic energy:
\[
T = T_M + T_m = \frac{M}{2} \dot{X}^2 + \frac{m}{2} \left(\dot{X} + \dot{x} \cos \alpha \right)^2 + \left(\dot{x} \sin \alpha \right)^2
\]

\[
= \frac{1}{2} (M+m) \dot{X}^2 + \frac{1}{2} m \dot{x}^2 + m \dot{X} \dot{x} \cos \alpha
\]

Potential energy:
\[
V = -mgx \sin \alpha
\]

Lagrangian:
\[
L = \frac{1}{2} (M+m) \dot{X}^2 + \frac{1}{2} m \dot{x}^2 + m \dot{X} \dot{x} \cos \alpha + mgx \sin \alpha
\]

Lagrange equations are as follows:

\[
\ddot{X} = (M+m) \frac{\ddot{X}}{\dot{X}} + m \ddot{x} \cos \alpha = 0
\]

\[
x: \quad m \ddot{x} + m \dot{X} \cos \alpha = mg \sin \alpha
\]

From the second equation we get:
\[
\ddot{X} = \frac{1}{\cos \alpha} (g \sin \alpha - \ddot{x})
\]

which we can substitute into the first equation and obtain:
\[
(M+m)g \frac{\sin \alpha}{\cos \alpha} = \left(M + m \cos \alpha \right) \ddot{x}
\]

or:
\[
\ddot{x} = \frac{g \sin \alpha}{1 - \frac{m}{M+m} \cos^2 \alpha}
\]

Acceleration \(\ddot{x} \) is constant. Hence the time it takes to slide distance \(\ell \) is obtained from:
\[
\ell = \frac{\ddot{x} t^2}{2}
\]

so:
\[
t = \sqrt{\frac{2 \ell}{\ddot{x}}} = \sqrt{\frac{2 \ell \left(1 - \frac{m}{M+m} \cos^2 \alpha \right)}{g \sin \alpha}}
\]
(2) a) After the bug has crawled distance \(b \), the Lagrangian of the system is

\[
L = \frac{I \dot{\theta}^2}{2} + \frac{1}{2} M u^2 + \frac{1}{2} M g l \cos \theta + \frac{1}{3} M g b \cos \theta
\]

Here \(I \) is the moment of inertia of the system that consists of the uniform rod and the bug:

\[
I = \frac{1}{3} M l^2 + \frac{1}{3} M b^2 = \frac{1}{3} M (l^2 + b^2)
\]

The Lagrange equation of motion, \(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{\partial L}{\partial \theta} \), becomes

\[
\frac{d}{dt}(I \dot{\theta}) = -\frac{1}{2} M g l \sin \theta - \frac{1}{3} M g b \sin \theta
\]

or

\[
I \ddot{\theta} + I \dot{\theta} = -M g \left(\frac{b}{2} + \frac{b}{3} \right) \sin \theta
\]

Now \(I = \frac{2}{3} M l b = \frac{2}{3} M b l \). Thus,

\[
\ddot{\theta} + \frac{2b}{l^2 + b^2} \dot{\theta} + \frac{3}{l^2 + b^2} g \sin \theta = 0 \hspace{1cm} \text{the equation of motion}
\]

b) Assuming \(u \) to be small we can neglect the second term in the equation of motion. We can also replace \(\sin \theta \) with \(\theta \) for small oscillations. Then we get

\[
\ddot{\theta} + \frac{3}{l^2 + b^2} g \theta = 0
\]

So the frequency of small oscillations is

\[
\omega = \sqrt{\frac{3}{l^2 + b^2} g}
\]
The kinetic energy of the disk as it falls is

\[T = \frac{1}{2} m {\dot{y}}^2 + \frac{1}{2} I {\dot{\phi}}^2 \]

where \(m \) is the mass of the disk and \(I \) is the moment of inertia about its center of mass. \(y \) denotes the vertical position of the center of mass, while \(\phi \) is the angle of rotation about the center of mass. We know that for a uniform disk \(I = \frac{ma^2}{2} \). The potential energy (assuming the y-axis point down) is given by \(V = -mg y \). With all that our Lagrangian is

\[L = \frac{1}{2} m {\dot{y}}^2 + \frac{1}{4} ma^2 {\dot{\phi}}^2 - mg y \]

Since the vertical position of the center of mass is related to the rotation angle as \(y = a \phi \), the constraint can be written as

\[g(y, \phi) = y - a \phi = 0 \quad (do \ not \ confuse \ g(y, \phi) \ and \ g) \]

For a system with a constraint the Lagrange equations are

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_n} \right) - \frac{\partial L}{\partial q_n} = \lambda \frac{\partial g(y, \phi)}{\partial \dot{q}_n} \]

In our case we get

\[y: \quad m{\ddot{y}} - mg = \lambda \]

\[\phi: \quad \frac{1}{2} ma^2 {\ddot{\phi}} = -\lambda a \]

These two equations and the equation of constraint can be solved easily. If we differentiate the equation of constraint we get \(\ddot{\phi} = \frac{\ddot{y}}{a} \), which can be inserted into the equation for \(\phi \). That gives

\[\begin{align*}
 m{\ddot{y}} - mg &= \lambda \\
 \frac{1}{2} ma^2 \ddot{\phi} &= -\lambda a
\end{align*} \]

The forces of constraint are

\[Q_y = \lambda \frac{\partial g(y, \phi)}{\partial y} = \lambda = -\frac{1}{3} mg \]

\[Q_{\phi} = \lambda \frac{\partial g(y, \phi)}{\partial \phi} = -\lambda a = \frac{1}{3} mga \]
For the circular orbits of radius R_1 and R_2 the velocity can be easily found by equating the gravitational and centrifugal forces

$$
\frac{m u_1^2}{2} = \frac{G m M}{R_1^2}
$$
$$
\frac{m u_2^2}{2} = \frac{G m M}{R_2^2}
$$

where m and M are the masses of the spacecraft and the Earth respectively.

Which yields $u_1 = \sqrt{\frac{GM}{R_1}}$ and $u_2 = \sqrt{\frac{GM}{R_2}}$. This immediately gives the answer to the last question — by what factor does the spacecraft velocity change in the whole maneuver:

$$
\frac{u_2}{u_1} = \sqrt{\frac{R_1}{R_2}}
$$

Now the intermediate orbit is an elliptic one. At points P_1 and P_2 (perihelion and aphelion) the radial component of the velocity is zero. Let us denote v_p and v_a the tangential components at the perihelion and aphelion respectively. The conservation of the angular momentum, $l = m r v_{th}$, and the total energy, $E = \frac{mv^2}{2} + V(r)$ gives

$$
\begin{cases}
 m R_1 v_p = m R_2 v_a \\
 \frac{m v_p^2}{2} - \frac{G m M}{R_1} = \frac{m v_a^2}{2} - \frac{G m M}{R_2}
\end{cases}
$$

or

$$
\begin{cases}
 R_1 v_p = R_2 v_a \\
 v_p^2 - v_a^2 = GM \left(\frac{1}{R_1} - \frac{1}{R_2} \right)
\end{cases}
$$

Solving for v_p and v_a yields

$$
\begin{align*}
 v_p &= \sqrt{2GM} \frac{R_2}{R_1 + R_2} \\
 v_a &= \sqrt{2GM} \frac{R_1}{R_2 + R_1 + R_2}
\end{align*}
$$

Then we can determine the required thrust factors at points P_1 and P_2:

$$
\lambda_1 = \frac{v_p}{u_1} = \sqrt{\frac{2R_2}{R_1 + R_2}}
$$
$$
\lambda_2 = \frac{v_a}{u_2} = \sqrt{\frac{2R_1}{R_1 + R_2}}
$$
If the angular positions of the beads are denoted \(\Theta_1 \) and \(\Theta_2 \) respectively, then the kinetic energy of the system is

\[
T = \frac{1}{2} m R^2 \dot{\Theta}_1^2 + \frac{1}{2} m R^2 \dot{\Theta}_2^2
\]

The potential energy, on the other hand, is

\[
V = \frac{1}{2} k R^2 (\Theta_2 - \Theta_1 - \pi)^2 + \frac{1}{2} k R^2 (\Theta_1 - \Theta_2 - \pi)^2
\]

The Lagrangian is then

\[
L = \frac{1}{2} m R^2 \dot{\Theta}_1^2 + \frac{1}{2} m R^2 \dot{\Theta}_2^2 - k R^2 (\Theta_2 - \Theta_1)^2 + \text{const}
\]

The equations of motion are:

\[
\begin{align*}
\Theta_1: & \quad m R^2 \ddot{\Theta}_1 - 2k R^2 (\Theta_2 - \Theta_1) = 0 \\
\Theta_2: & \quad m R^2 \ddot{\Theta}_2 + 2k R^2 (\Theta_2 - \Theta_1) = 0
\end{align*}
\]

or

\[
\begin{align*}
\ddot{\Theta}_1 + 2\omega_0^2 \Theta_1 - 2\omega_0^2 \Theta_2 &= 0 \\
\ddot{\Theta}_2 + 2\omega_0^2 \Theta_2 - 2\omega_0^2 \Theta_1 &= 0
\end{align*}
\]

In the matrix form this system of equations looks as follows:

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\ddot{\Theta}_1 \\
\ddot{\Theta}_2
\end{pmatrix}
= -\begin{pmatrix}
2\omega_0^2 & -2\omega_0^2 \\
-2\omega_0^2 & 2\omega_0^2
\end{pmatrix}
\begin{pmatrix}
\Theta_1 \\
\Theta_2
\end{pmatrix}
\]

If we seek for the solution in the form

\[
\vec{\Theta} = \begin{pmatrix} \Theta_1(t) \\ \Theta_2(t) \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{i \omega t} = \vec{a} e^{i \omega t}
\]

then we obtain an eigenvalue problem

\[
K \vec{a} = \omega^2 M \vec{a}
\]

which has a nontrivial solution when \(\text{det}(K - \omega^2 M) = 0 \)

Thus,
\[\begin{vmatrix} 2\omega_0^2 - \omega^2 & -2\omega_0^2 \\ -2\omega_0 & 2\omega_0^2 - \omega^2 \end{vmatrix} = 0 \quad \text{if } \lambda = \frac{\omega^2}{\omega_0^2} \text{ then we get} \\
(2-\lambda)^2 - 4 = 0 \quad \lambda_{1/2} = 4, 0 \]

Hence the roots are \(\omega^2_{1,2} = 4\omega_0^2, 0 \).

The first root, \(\omega^2 = 4\omega_0^2 \), yields the following eigenvector
\[
\begin{pmatrix}
-2\omega_0^2 \\
-2\omega_0^2
\end{pmatrix}
\begin{pmatrix}
a_1^{(1)} \\
a_2^{(1)}
\end{pmatrix}
= 0 \quad \Rightarrow \quad a_2^{(1)} = -a_1^{(1)} \quad \Rightarrow \quad \vec{a}^{(1)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

So \(\Theta^{(1)}(t) = A \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{2i\omega_0 t} \) where \(A \) is a constant.

The physically meaningful solution is, of course, obtained by taking the real part of \(\Theta^{(1)}(t) \).

The second root, \(\omega^2 = 0 \), needs to be treated with a little more care. Obviously
\[
\begin{pmatrix}
2\omega_0^2 \\
-2\omega_0^2
\end{pmatrix}
\begin{pmatrix}
a_1^{(2)} \\
a_2^{(2)}
\end{pmatrix}
= 0 \Rightarrow \quad a_2^{(2)} = a_1^{(2)} \quad \Rightarrow \quad \vec{a}^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

The zero eigenvalue, \(\omega^2 = 0 \), does not correspond to the oscillatory motion. It corresponds to the equation
\[\ddot{\xi}_2 = 0 \]
in normal coordinates \(\vec{\xi}' \), where \(\xi_2 = \frac{1}{12} \theta_1 + \frac{1}{12} \theta_2 \). The solution of that equation
\[\xi_2(t) = \frac{1}{12} \theta_1(t) + \frac{1}{12} \theta_2(t) = \alpha t + \beta \quad \alpha, \beta = \text{const} \]
It corresponds to a motion where both beads rotate with a constant angular velocity.

The general solution of the equation of motion is
\[\vec{\Theta}(t) = \vec{\Theta}^{(1)}(t) + \vec{\Theta}^{(2)}(t) = A \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{2i\omega_0 t} + (Bt + C) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

where \(A \) is a complex constant and \(B \) and \(C \) are real constants. (effectively there are four real constants.)
a) Given the Lagrangian
\[L = f(t) \left[\frac{1}{2} m \dot{q}^2 - \frac{1}{2} m \omega^2 q^2 \right] \]
the equation of motion is
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \]
or
\[\frac{d}{dt} \left(f(t) m \ddot{q} \right) - f(t) m \omega^2 q = 0 \]
or
\[f \dddot{q} + f \ddot{q} - f \omega^2 q = 0 \]
or
\[\dddot{q} + \frac{f}{f} \ddot{q} - \omega^2 q = 0 \]
Hence we see that \(\frac{f}{f} = 2\gamma \) and \(f(t) = e^{2\gamma t} \) \((f(0) = 1) \)

b) \[p = \frac{\partial L}{\partial \dot{q}} = f(t) m \dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{mf} \]

Then the Hamiltonian is
\[H = p \dot{q} - L(q, \dot{q}, p, \dot{p}, t) = \frac{p^2}{mf} - f \left[\frac{1}{2} m \frac{p^2}{m^2} \dot{p}^2 - \frac{1}{2} m \omega^2 q^2 \right] = \]
\[= \frac{p^2}{2m} e^{-2\gamma t} + \frac{m \omega^2 q^2}{2} e^{2\gamma t} \]

c) The original and transformed Hamiltonians are related via
\[\hat{p} \hat{q} = H = p \dot{q} - H' + \frac{d}{dt} \left(F_2(q, p, t) - QP \right) \]
or, if we take the time derivative,
\[\hat{p} \hat{q} = H = p \dot{q} - H' + \frac{\partial F_2}{\partial t} + \frac{\partial F_2}{\partial q} \dddot{q} + \frac{\partial F_2}{\partial p} \dddot{p} - \dot{Q} \dot{P} - Q \dot{P} \]

from which it follows that
\[p = \frac{\partial F_2}{\partial q} \quad Q = \frac{\partial F_2}{\partial p} \quad H' = H + \frac{\partial F_2}{\partial t} \]

So when \(F_2 = e^{\gamma t} QP \) we obtain
\[p = \frac{\partial F_2}{\partial q} = e^{\gamma t} P \quad Q = \frac{\partial F_2}{\partial p} = e^{\gamma t} q \quad \Rightarrow \quad q = e^{-\gamma t} Q \]

\[H' = \frac{e^{2\gamma t} p^2}{2m} e^{2\gamma t} + \frac{m \omega^2 q^2}{2} e^{2\gamma t} + ye^{\gamma t} e^{-\gamma t} QP = \frac{p^2}{2m} + \frac{m \omega^2 q^2}{2} + yQ \]

\(H' \) does not have any explicit time dependence and is, therefore, conserved.