Review of basic results for rotational motion of rigid bodies (continue)

Let us consider a rigid body of an arbitrary shape that is free to swing under its own weight about a fixed horizontal axis of rotation. It is known as physical pendulum.

The equation that describes the motion can be obtained either with the Lagrangian method or by considering torques. Let us do that in the former approach. The kinetic energy of rotation is

\[T = \frac{1}{2} I \dot{\omega}^2 = \frac{1}{2} I \dot{\Theta}^2 \] (I is the moment of inertia about point O)

The potential energy is given by

\[V = -Mg l \cos \Theta \]

It is easy to see that the potential energy is determined by the vertical displacement of the center of mass

\[V = -\sum_i m_i g y_i = -g \sum_i z_{mi} y_i = -g \left(\sum_i z_{mi} \right) \frac{\sum_i z_{mi} y_i}{\sum_i z_{mi}} = -Mg y_{cm} \]

\[= -Mg l \cos \Theta \]

Then

\[L = T - V = \frac{1}{2} I \dot{\Theta}^2 + Mgl \cos \Theta \]

\[\frac{\partial L}{\partial \dot{\Theta}} = I \dot{\Theta} \quad \frac{\partial L}{\partial \Theta} = -Mgl \sin \Theta \]

and the Lagrange equation is \[I \ddot{\Theta} + Mgl \sin \Theta = 0 \]
In the limit of small oscillations \(\sin \theta \approx \theta \) and we get a harmonic oscillator

\[
\ddot{\theta} + \frac{MgL}{I} \theta = 0 \quad \Theta(t) = A \cos(\omega t + \phi)
\]

\[
\omega = \sqrt{\frac{MgL}{I}}
\]

Now let us see what happens with torques

\[
\vec{N}_{\text{tot}} = \sum_i \vec{F}_i \times \vec{r}_i = \left(\sum_i \vec{m}_i \vec{v}_i \right) \times \vec{g} = \vec{M}_{\text{cm}} \times \vec{g}
\]

When we project \(\vec{N}_{\text{tot}} \) onto the axis perpendicular to the motion we get

\[
N_2 = -M_{\text{cm}} g \sin \theta
\]

The fundamental equation \(\vec{N} = \frac{d\vec{L}}{dt} \) then gives

\[-M_{\text{g}} g \sin \theta = \frac{dL_2}{dt}
\]

\[-M_{\text{g}} g \sin \theta = \frac{d}{dt} (I \dot{\theta})
\]

This results in the same equations we obtained before:

\[I \ddot{\theta} + M_{\text{g}} \sin \theta = 0\]

Let us consider an illustrative example: swinging of a cube of uniform density that is suspended at one of its angles. For that we need to find its moment of inertia (about an axis that goes through its angle and lies in a plane parallel to the ceiling).
But first calculate the moment of inertia a simpler configuration, when the edges of the cube are aligned along the x, y, and z axes:

\[I_{xx} = \iiint_{-a/2}^{a/2} \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} p (y^2 + z^2) \, dx \, dy \, dz \]

\[= \frac{pa^3}{2} \cdot \frac{y^3}{3} \bigg|_{-a/2}^{a/2} = \frac{pa^5}{6} = I_{yy} = I_{zz} \]

\[I_{xy} = \iiint_{-a/2}^{a/2} \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} p (-xy) \, dx \, dy \, dz = 0 \]

In this setting, the tensor of inertia is proportional to a unit matrix

\[I = \begin{pmatrix} \frac{pa^5}{6} & 0 & 0 \\ 0 & \frac{pa^5}{6} & 0 \\ 0 & 0 & \frac{pa^5}{6} \end{pmatrix} = \frac{pa^5}{6} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

The moment of inertia about any specific axis that goes through the center and given by the normal vector \(\hat{n} \) is

\[I_{cm} = \hat{n}^T I \hat{n} \]

(* see comment in the end)

Now since I is a unit matrix and \(\hat{n} \) is a normalized unit vector

\[I_{cm} = I_{xx} = I_{yy} = I_{zz} = \frac{pa^5}{6} = \frac{Ma^2}{6} \]

for any choice of \(\hat{n} \)

It should be noted that this happens for a cube but not for any cuboid where \(a_x \neq a_y \neq a_z \)
Now we can use the parallel axis theorem to determine the moment of inertia about a point located at an angle

\[I_{\text{sub}} = I_{\text{cm}} + ML^2 = \frac{Ma^2}{6} + M\left(\frac{a\sqrt{3}}{2}\right)^2 = \]
\[= Ma^2\left(\frac{1}{6} + \frac{3}{4}\right) = \frac{M}{12}Ma^2 \]

With that we can determine \(\omega \) of oscillations

\[\omega = \sqrt{\frac{MgL}{I}} = \sqrt{\frac{\frac{Mg}{\frac{11}{12} Ma^2}}{\frac{11}{12} Ma^2}} = \sqrt{\frac{6 \sqrt{3} \frac{g}{A}}{\frac{11}{12} \frac{a}{A}}} \]

Comment: Moment of inertia about an axis defined by a normal vector

\[\hat{n} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix} = \hat{i} \cos x + \hat{j} \cos \beta + \hat{k} \cos \gamma \]

\[I = \sum m_i \hat{r}_i^2 \quad \hat{r}_{il} = |r_i \sin \psi| = |\hat{r}_i \times \hat{n}| \]

\[\hat{r}_{il}^2 = (\hat{r}_i \times \hat{n})^2 = \left(\begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} \begin{vmatrix} x_i \\ y_i \\ z_i \end{vmatrix} \end{vmatrix} \right)^2 = \]
\[= (y_i \cos \gamma - z_i \cos \beta)^2 + (z_i \cos \beta - x_i \cos \gamma)^2 + (x_i \cos \beta - y_i \cos \delta)^2 \]
\[= (y_i^2 + z_i^2) \cos^2 \gamma + (z_i^2 + x_i^2) \cos^2 \beta + (x_i^2 + y_i^2) \cos^2 \gamma - 2y_i z_i \cos \beta \cos \gamma - 2z_i x_i \cos \beta \cos \theta - 2x_i y_i \cos \beta \cos \delta \]
\[= (h_x n_y n_z) \begin{pmatrix} I_{xy} & I_{xz} & I_{x^2} \\ I_{yx} & I_{yz} & I_{y^2} \\ I_{zx} & I_{zy} & I_{z^2} \end{pmatrix} \begin{pmatrix} h_x \\ n_y \\ n_z \end{pmatrix} = \hat{n}^r \hat{I} \hat{n} \]