Hamiltonian mechanics. Hamilton's equations of motion

We started this course with the Newtonian form of mechanics, where the central concepts are forces and accelerations. It was primarily suited in Cartesian coordinate systems. Then we introduced the Lagrangian formulation. It is entirely equivalent to Newton's formulation, but the Lagrangian formulation has two important advantages. It allows to use generalized coordinates (not just the Cartesian ones) q_1, \ldots, q_n as the Lagrange's equations are equally valid for any choice of q_1, \ldots, q_n. Also, in certain situations it is considerably more tractable. Indeed, sometimes it is not even possible to state explicitly all the forces acting on an object, while it remains relatively simple to give expressions for the kinetic and potential energies. On the other hand, the Lagrangian method may have disadvantages when applied to dissipative systems.

Now we want to consider yet another formulation of mechanics - the Hamiltonian mechanics. It is also equivalent to the Newtonian mechanics, but allows more flexibility in terms of the choice of coordinates. In fact, in that sense it is even more flexible than the Lagrangian mechanics. The central quantity in the Hamiltonian mechanics is the
Hamiltonian function, which in most practical situations is just the total mechanical energy—something that has a clear physical meaning and is often conserved. It is well suited to handle other conserved quantities and provides a natural transition from classical mechanics to quantum mechanics.

The Hamiltonian mechanics arises naturally from the Lagrangian one and so we will start from the Lagrangian, which in most cases is given by

\[L = T - V \]

The Lagrangian is a function of \(q_1, \ldots, q_n \), their time derivatives, \(\dot{q}_1, \ldots, \dot{q}_n \), and time \(t \). The \(n \) coordinates \(q_n \) define a point in \(n \)-dimensional configuration space, while \(2n \) coordinates \(q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n \) define a point in state space.

Let us recall the definition of generalized momenta:

\[p_i = \frac{\partial L}{\partial \dot{q}_i} \]

\(p_i \) is the canonical momentum or the momentum conjugate to \(q_i \).

The Hamiltonian function (or just Hamiltonia) \(H \) is defined as

\[H = \sum_{i=1}^{n} p_i \dot{q}_i - L \]

\(2n \) coordinates \(q_1, \ldots, q_n, p_1, \ldots, p_n \) define a point in the phase space.

Let us now derive Hamilton's equations of motion for a conservative, one-dimensional system with a single generalized coordinate \(q \).
The Lagrangian is

\[L = L(q, \dot{q}) = T(q, \dot{q}) - V(q) \]

For a conservative system \(V \), by definition, depends on \(q \) (not \(\dot{q} \)) only. The kinetic energy always has this general form

\[T = \frac{1}{2} A(q) \dot{q}^2 \]

which can be proven as follows for a general system with \(n \) degrees of freedom

\[
T = \frac{1}{2} \sum_i m_i \ddot{q}_i = \frac{1}{2} \sum_i m_i \left(\sum_j \frac{\partial \ddot{q}_i}{\partial q_j} \dot{q}_j \right) \left(\sum_k \frac{\partial \ddot{q}_i}{\partial \dot{q}_k} \dot{q}_k \right) = \sum_{j,k=1}^{n} \left[\sum_i m_i \left(\frac{\partial \ddot{q}_i}{\partial q_j} \right) \left(\frac{\partial \ddot{q}_i}{\partial \dot{q}_k} \right) \right] \dot{q}_j \dot{q}_k
\]

\[A_{jk}(q_1, \ldots, q_n) \]

According to the definition of the Hamiltonian

\[H = p\dot{q} - L \]

with \(p = \frac{\partial L}{\partial \dot{q}} = A(q) \dot{q} \) it becomes

\[H = A(q) \dot{q}^2 - L = 2T - L = T + V \]

Next let us express \(\dot{q} \) as \(\dot{q} = \frac{p}{A(q)} = \dot{q}(q, p) \). Then

\[H = p\dot{q} - L = p\dot{q}(q, p) - L(q, \dot{q}(q, p)) \]

is a function of \(p \) and \(q \).

In the final step let us evaluate derivatives of

\[H \]

with respect to \(q \) and \(p \),

\[\frac{\partial H}{\partial q} = \frac{\partial}{\partial q} \left(p\dot{q}(q, p) - L(q, \dot{q}(q, p)) \right) = p \frac{\partial \dot{q}}{\partial q} - \left[\frac{\partial L}{\partial q} + \frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial q} \right] = -\frac{\partial L}{\partial q} = -\frac{dL}{dt} \frac{\partial}{\partial q} = -\frac{d}{dt} p = -\dot{p} \]
\[
\frac{\partial H}{\partial p} = \frac{1}{2} \left(p \dot{q}(a, p) - L(a, \dot{q}(a, p)) \right) = \dot{q} + p \frac{\partial \dot{q}}{\partial p} - \frac{\partial L}{\partial q} \frac{\partial q}{\partial p} = \dot{q} = \dot{i}
\]

Therefore we have the following equations of motion for a 1D system:

\[
\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}
\]

Example: particle restricted to move in 1D with a potential energy \(V(x) \)

\[
L = T - V = \frac{1}{2} m \dot{x}^2 - V(x)
\]

Lagrange equation: \(\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \) or \(-\frac{\partial V}{\partial x} = m \ddot{x} \)

\[
p = \frac{\partial L}{\partial \dot{x}} = m \dot{x}
\]

\[
H = p \dot{x} - L = \frac{p^2}{2m} - \left[\frac{p^2}{2m} - V(x) \right] = \frac{p^2}{2m} + V(x)
\]

Hamilton's equations:

\[
\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial H}{\partial x} = -\frac{\partial V}{\partial x}
\]

Example: Atwood's machine

\[
L = T - V = \frac{1}{2} (m_1 + m_2) \dot{x}^2 + (m_1 - m_2) g x
\]

\[
p = \frac{\partial T}{\partial \dot{x}} = (m_1 + m_2) \dot{x}
\]

\[
\dot{p} = \frac{p}{m_1 + m_2}
\]

Now we can substitute \(\dot{x} \) in \(H \):

\[
H = T + V = \frac{p^2}{2 (m_1 + m_2)} - (m_1 - m_2) g x
\]

Hamilton's equations:

\[
\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m_1 + m_2}, \quad \dot{p} = -\frac{\partial H}{\partial x} = (m_1 - m_2) g
\]

From these equations we find \(\dot{x} = \frac{m_1 - m_2}{m_1 + m_2} g \).
Now let us generalize the formalism to the case of n degrees of freedom. Assume we have n generalized coordinates:
\[\vec{q} = (q_1, \ldots, q_n) \]
and generalized velocities and momenta:
\[\dot{\vec{q}} = (\dot{q}_1, \ldots, \dot{q}_n) \quad \vec{p} = (p_1, \ldots, p_n) \]
Our starting point is, again, the Lagrangian
\[L = L(\vec{q}, \dot{\vec{q}}, t) = T - V \]
The Hamiltonian is defined as
\[H = \sum_{i=1}^{n} p_i \dot{q}_i - L \quad \text{with} \quad p_i = \frac{\partial L(\vec{q}, \dot{\vec{q}}, t)}{\partial \dot{q}_i} \quad i = 1, \ldots, n \]
These equations can be solved to get $\dot{q}_i(q_1, \ldots, q_n, p_1, \ldots, p_n)$.

We can eliminate q_1 from the Hamiltonian above
\[H = \sum_{i=1}^{n} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}, \vec{p}, t), t) \]
Then we take partial derivatives
\[\frac{\partial H}{\partial q_k} = \frac{\partial}{\partial q_k} \left[\sum_{i=1}^{n} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}, \vec{p}, t), t) \right] = \]
\[= \sum_{i=1}^{n} p_i \frac{\partial \dot{q}_i}{\partial q_k} - \frac{\partial L}{\partial q_k} - \sum_{j=1}^{n} \frac{\partial L}{\partial \dot{q}_j} \frac{\partial \dot{q}_j}{\partial q_k} = -\frac{\partial L}{\partial q_k} = -\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} \]
\[\dot{p}_k = \]
\[-\frac{d}{dt} p_k = -\dot{p}_k \quad \Rightarrow \quad \dot{p}_k = -\frac{\partial H}{\partial q_k} \]
\[\frac{\partial H}{\partial p_k} = \frac{\partial}{\partial p_k} \left[\sum_{i=1}^{n} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}, \vec{p}, t), t) \right] = \dot{q}_k(\vec{q}, \vec{p}, t) + \]
\[+ \sum_{i=1}^{n} p_i \frac{\partial q_i}{\partial p_k} - \sum_{j=1}^{n} \frac{\partial L}{\partial \dot{q}_j} \frac{\partial \dot{q}_j}{\partial p_k} = \dot{q}_k \quad \Rightarrow \quad \dot{q}_k = \frac{\partial H}{\partial p_k} \]