
PHYS 511: Computational Modeling and Simulation - Fall 2016
Assignment #4, due Friday November 18, before class

Galerkin (Rayleigh-Ritz) approach to solve an eginevalue problem

1. Consider the stationary Schröedinger equation for an electron moving a spherically-symmetric
potential V (r) (here r = (x, y, z) and r =

√
x2 + y2 + z2 ). It has the following form:

− h̄2

2m
∇2ψ + V (r)ψ = Eψ. (1)

In the above equation h̄ is the Plank constant divided by 2π, m is the mass of the electron,
and E is the energy of the electron. ψ(r) = ψ(x, y, z) is the unknown wave function (can
be complex). For attractive potentials (this requires ∂V

∂r
> 0, because in the classical sense

the direction of the force acting on the electron, given by F = −∇V , is towards the center
located at the origin) this equation may allow solutions only for some discrete values of E.
Thus, the stationary Schrödinger equation is an eigenvalue problem. The lowest such value
of E is called the ground state energy and the corresponding wave function is called the
ground state wave function.

Due to spherical symmetry of V (r) the solutions can be represented as products of the
radial part, Rnl, of the wave function and spherical harmonics, Y m

l :

ψ(r) = Rnl(r)Y
m
l (θ, ϕ), n = 1, 2, 3 . . . , l = 0, 1, 2 . . . , m = −l, . . . , l, (2)

where r, θ, and ϕ are electron coordinates in the spherical coordinate system. Thus, in order
to solve the Schrödinger equation for a spherically symmetric potential one only needs to
find Rnl. Equation (1) is then reduced to a 1D eigenvalue problem (which can be further
reduced to a Sturm-Liouville form):
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V (r) +

h̄2

2m

l(l + 1)
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]
R = ER (3)

Next, to make things more convenient, we introduce new dimensionless coordinates, r ← r
aB

(constant aB = h̄2

me2
, which has the dimension of length, is called the Bohr radius. e is the

charge of the electron). In these new coordinates the radial Schrödinger equation becomes:

HR = ER, (4)

where the Hamiltonian operator in the case l = 0 (quantum number l is zero for the ground
state) is

H = −1
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∂r
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∂

∂r
+ V (r). (5)

2. In this assignment we will be solving the Schrödinger equation for the ground state of the
hydrogen atom, i.e. our potential in dimensional units is V (r) = −1

r
and

H = −1

2
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∂

∂r
r2
∂

∂r
− 1

r
. (6)

To do that we will be using the variational method in conjunction with the Galerkin ap-
proach (which in quantum mechanics is traditionally called the Rayleigh-Ritz method).
Our task will be to approximate the radial part of the wave function, R(r), as a linear
combination of N basis functions:

R(r) =
N∑
i=1

ci φ(r). (7)



The basis functions will be Gaussians,

φi = exp(−air2), (8)

where parameter ai is unique for each function. We can vary linear coefficients ci in (7) to
minimize the trial energy, ε (the energy computed within our approximate method). Note
that the variational method in quantum mechanics says the trial energy ε can never exceed
the exact ground state energy, Egr, that is ε ≤ Egr. Moreover, it can be shown that the
problem of finding the minimum of ϵ with respect to linear coefficients ci is equivalent to
solving the generalized eigenvalue problem with N × N matrices H (Hamiltonian matrix)
and S (overlap matrix):

Hc = εSc, (9)

where matrix elements of H and S are given by

Hij =

∫∫∫
φ∗
iHφjdr = 4π

∞∫
0

φ∗
iHφjr

2dr, Sij =
∫∫∫

φ∗
iφjdr = 4π

∞∫
0

φ∗
iφjr

2dr.

The asterix (∗) stands for complex conjugation and can be omitted if the basis functions
are real.

Note that the generalized eigenvalue equation (9) has N solutions, ε1, . . . , εN (all of which
are implicit functions of Gaussian parameters ai). The smallest ε corresponds to the ground
state energy. Also note that matricesH and S are symmetric (or hermitian if basis functions
were complex). Moreover, it can be shown that matrix S is positive definite.

In our particular case these matrix elements can be easily evaluated when φi’s are Gaussians
(8). They expressions are:

Hij =
3π3/2aiaj
(ai + aj)5/2

− 2π

ai + aj
, Sij =

π3/2

(ai + aj)3/2
. (10)

3. Write a Python program (as04.py) that uses expansion (7) with N ranging from 1 to 4 to
determine variational upper bounds to the exact ground state energy. In this program you
should determine not only the optimal values of linear coefficients ci by solving (9), but also
minimize the energies with respect to nonlinear parameters of the gaussians, ai.

Useful hints:

(a) The exact analytic solution for the ground state of hydrogen atom is E = −1
2
and

R(r) = 2 e−r (which gives ψ = RY 0
0 = 1√

π
e−r ). You can do a sanity check: if any of

the eigenvalues you obtain when solving (9) happen to be smaller than −1
2
, then that

means you did something wrong. As you increase the number of terms N in expansion
(7), the trial energy should approach −1

2
from above.

(b) To solve the generalized eigenvalue problem you can use function scipy.linalg.eigh

from scipy library. To find a minimum of a function you can use
scipy.optimize.minimize from the same library. When doing that you will need to
provide an initial guess for parameters ai of the Gaussians. For N = 4 something
like [0.2, 0.5, 1.0, 2.0] should be a reasonable initial guess. In fact, any positive
values should be acceptable as an initial guess. You will also need to pick the mini-
mization algorithm/method used. In principle, all of them should work. You can use,
for instance, Nelder-Mead. In order to actually minimize the trial energy you will need
to write your own function that takes nonlinear parameters ai as an input argument.
Make sure this function works properly. For example, it should never return a trial
energy smaller than −1

2
.
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(c) To initialize matrices it is convenient to call function numpy.zeros from numpy library.

(d) For a single-term Gaussian expansion the result can actually be obtained analytically:
ε = − 4

3π
≈ −0.424413 and a1 = 8

9π
≈ 0.282942. You can use this data to verify that

your program works properly.

4. If you want to do an optional bonus task then plot all trial wave functions you obtained (up
to N = 4) and compare them on the same plot to the exact analytic solution. You should
see that your trail wave functions (7) approach the exact solution as N gets larger. Note
that in order to plot the trial wave functions (linear combinations of Gaussians) you will
need to determine not only the lowest eigenvalues ε in (9), but also the corresponding linear
coefficients ci (the corresponding eigenvector). A properly normalized eigenvector can be
computed with scipy.linalg.eigh. To do the plotting you can use matplotlib library.

5. Include the results of your calculations (trial energy and the values of parameters ai) in file
report.txt and place it, along with your Python source code and plots (if you generate
any) in directory as04 in your google drive directory shared with the instructor.

Found an error or need a clarification? Email the instructor at sergiy.bubin@nu.edu.kz
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