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Heat equation

The most general form of the heat equation in 3D is as follows:
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where
T (x , y , z , t) - temperature
ρ - density
cp - heat capacity
kx , ky , and kz - thermal conductivities in x, y, and z direction
Q(x , y , z , t) - heat production function (volumetric heat flux)

In general, quantities ρ, cp, kx , ky , and kz could be functions of both x , y ,
z and t (or T )



Heat equation

However, within if the expected spatial/temporal temperature variations are
not too huge, ρ, cp, kx , ky , and kz can be considered constant. Also, for
most materials the thermal conductivity is isotropic, i.e. kx = ky = kz .
Finally, if no heat is supplied to the system other than through heat
exchange with the environment then Q = 0. With that the heat equation
gets simplified to the following form:

∂T

∂t
= α∇2T , (2)

where constant α is called thermal diffusivity.



Heat equation

When boundary conditions are constant (i.e. do not change with time)
temperature distribution T do not change with time (∂T∂t = 0) after initial
equilibration. Hence we deal with a stationary problem

∇2T = 0, (3)

The above equation is called the Laplace equation.



Finite difference discretization in 2D

For simplicity, let us consider the 2D case. To approximate the Laplacian
operator, we can use finite-differences. For example, The simplest
three-point approximations for second derivatives give:

f ′′xx(x , y) =
f (x−h, y)−2f (x , y)+f (x+h, y)

h2
,

f ′′yy (x , y) =
f (x , y−h)−2f (x , y)+f (x , y+)

h2
,

and

∇2f (x , y) =
f (x−h, y)+f (x , y−h)−4f (x , y)+f (x+h, y)+f (x , y+h)

h2
.

(4)



Laplace operator in 2D

When we look at the 2D grid representing function f (x , y), we can see a
5-point stencil

∇2fi ,j =
fi−1,j + fi ,j−1 − 4fi ,j + fi+1,j + fi ,j+1

h2
. (5)



Solution in 2D

Expression (5) gives us N = Nx × Ny (N is the toal number of grid points)
homogenious linear equations. When we incorporate boundary conditions, it
yields a system of N − Nb inhomogenious equations with a sparce matrix,
where Nb is the number of points where the boundary conditions are given.
We can solve these equations directly (e.g. with the help of LAPACK) and
obtain the solution of the Laplace equation.



Iterative scheme in 2D

Alternatively, we could employ an iterative approach to solving the Laplace
equation on a grid. If ∇2f = 0 then each point on the grid must satisfy the
condition

fi−1,j + fi ,j−1 − 4fi ,j + fi+1,j + fi ,j+1 = 0, (6)

or

fi ,j =
1

4
(fi−1,j + fi ,j−1 + fi+1,j + fi ,j+1) . (7)

This suggests that if we do iterations in the form (p is the iteration number)
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which in this particular case amounts to representing f as an average of its
closest 4 neighbours, then after some time we will converge/approach to
the exact solution.



Iterative scheme in 3D

In 3D case this becomes
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It is important that we do not change grid points that represent boundary
conditions (e.g. the exterior points if the boundary conditions are defined
on the exterior surface of the numerical grid)


