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Analytic representation of a function

What we have done previously is that we represented
a function (an unknown solution of a differential
equation of an eigenvalue problem) as an array of
points on a discrete grid.

You can think about this from a different pespective.
Essentially we represent the function as a combina-
tion of bins. If you define a bin as a sharp square
function bi (x) then f(x) can be represented as a lin-
ear combination of such functions:

f (x) =
N∑
i=1

cibi (x), bi (x) =

{
1, xi− h

2 < x < xi +
h
2

0, otherwise

ci = f (xi )



Analytic representation of a function

What if instead of square bins we use some other basis functions? Indeed,
this is what we do when we represent a function as a truncated Fourier
series. Obviously the more the terms we use in the Fourier series the better
it approximates our function on a given interval.

f (x) =
N∑
i=0

ci sin((i + 1)πx)

N = 3 N = 11



Analytic representation of a function
The question is: how do we choose coefficients ci? What are our criteria?
There may be different choices that give the resulting approximation that in
some way can be considered close to f (x).
When we solve a linear differential equation with an unknown function
f (x), e.g.

Lf (x) = g(x),

we have the left and right hand sides of it. If we approximate f (x) as

fappr(x) =
N∑
i=1

ciϕi (x),

then we can require that the left hand side deviates from the right hand
side as little as possible. That is, the residual

r(x) ≡ Lfappr − g

is minimized. What does it mean “minimized”? There may be different
“measures” of it.



Inner product of functions

For further discussion we need to define the inner product of two functions
p(x) and q(x) on a given interval/domain

〈p|q〉 =

b∫
a

p(x)∗q(x)dx ,

where the asterix (∗) stands for complex conjugation. In many situations
we deal with real functions so complex conjugation operation is not needed.

Another important concept is the orthogonality of two functions. Functions
p(x) and q(x) are orthogonal if

〈p|q〉 = 〈q|p〉 = 0.



Galerkin orthogonality
Since we have a set of N basis functions ϕi at our disposal we may require
that the residual r(x) = Lfappr − g is orthogonal to the subspace spanned
by {ϕi}. In other words, r(x) should be orthogonal to each ϕi . This
property is the Galerkin orthogonality.
This yields a system of equations:

〈ϕj |r〉 = 0, j = 1, . . . ,N

or

〈ϕj |L
N∑
i=1

ciϕi − g〉 = 0, j = 1, . . . ,N

which is equivalent to a system of N linear algebraic equations:

N∑
i=1

ci 〈ϕj |Lϕi 〉︸ ︷︷ ︸
Aji

= 〈ϕj |g〉︸ ︷︷ ︸
bj

, j = 1, . . . ,N

Ac = b



Choice of basis

The most important issue of the Galerkin type methods is the choice of the
choice of an appropriate basis {ϕi}, i = 1 . . .N

• The basis should be good enough to represent the solution accurately
(at least in the domain where we are interested)

• It should provide systematic convergence if we increase N (i.e. the
basis should be complete)

• It should satisfy the boundary conditions of the problem

• All “inner products” (i.e. integrals Aji and bj) with basis functions
{ϕi} should be computable and these computations should be
numerically efficient.



Galerkin method example 1

Let us solve the differential equation

Lf (x) = f ′′(x) + f (x) = 2x(x − 1),

with the boundary conditions y(0) = 0 and y(1) = 0.
Let us choose an appropriate basis, N = 3:

ϕ1(x) = x(1− x), ϕ2(x) = x2(1− x)2, ϕ3(x) = x3(1− x)3.

Each basis function satisfy the above boundary conditions, so their linear
combination will obviously satisfy them too. Our trial (i.e. approximate)
solution is then

fappr(x) =
3∑

i=1

ciϕi (x).



Galerkin method example 1

We substitute the trial function into

〈ϕj |r〉 =

∫ 1

0
ϕj(x) [Lfappr(x)− g(x)] dx = 0,

or ∫ 1

0
ϕj(x)

[
f ′′appr(x) + fappr(x)− 2x(x − 1)

]
dx = 0.



Galerkin method example 1

If we do the integrals and some algebra, that yields the following system of
3 linear equations:

− 3

10
c1 +

5

84
c2 −

4

315
c3 =

1

15
,

5

84
c1 +

11

630
c2 +

61

13860
c3 = − 1

70
,

− 4

315
c1 +

61

13860
c2 −

73

60060
c3 =

1

315
.

(1)

which has the following solution:

c1 = −1370
7397 ≈ −0.18521,

c2 = 50688
273689 ≈ 0.185203,

c3 = − 132
21053 ≈ −0.00626989.



Galerkin method example 2
Galerkin method can also be used to solve eigenvalue problems. Let us
consider the Schrödinger equation for 1D harmonic oscillator:

HΦi (x) = EiΦi (x) (2)

where the Hamiltonian is

H = − ~2

2m

d2

dx2
+ V (x). (3)

and

V (x) =
mωx2

2
.

The Ritz theorem says

ε =
〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E1, (4)

Here E1 is the exact energy of the ground state. The equality holds if and
only if ψ ≡ Φ1.



Galerkin method example 2
Use

ψ(x) =
N∑
i=1

ciϕi (x). (5)

φi ’s are basis functions, ci are the expansion coefficients (linear variational
parameters). Minimization with respect to ck yields the generalized
eigenvalue problem:

Hck = εkSck , (6)

Hij = 〈ϕi |H|ϕj〉, Sij = 〈ϕi |ϕj〉, ck =


c1k
c2k

...
cNk

 .

Mini-Max theorem guarantees that

ε1 ≥ E1, ε2 ≥ E2, . . . , εN ≥ EN . (7)



Galerkin method example 2

Gaussian basis functions

ϕi (x) =
(αi

π

)1/2
e−αi (x−si )2 . (8)

Here αi and si are nonlinear variational parameters. Matrix elements are
easily calculable:

〈ϕi |ϕj〉 =

(
2
√
αiαj

αi + αj

)1/2

exp

(
−

αiαj

αi + αj
(si − sj)

2

)
, (9)

〈ϕi | −
~2

2m

d2

dx2
|ϕj〉 =

~2

m

αiαj

αi + αj

(
1−

2αiαj

αi + αj
(si − sj)

2

)
〈ϕi |ϕj〉, (10)

V (x) =
mω2x2

2
: 〈ϕi |V (x)|ϕj〉 =

mω

2

(
1

αi + αj
+

(
αi si + αjsj
αi + αj

)2
)
〈ϕi |ϕj〉.

(11)



Galerkin method example 2

Normalized Gaussian functions with different αi .



Galerkin method example 2

Normalized Gaussian functions with different si and the same αi .



Galerkin method example 2

Comparison of the eigenenergies of the quantum harmonic oscillator
obtained by using shifted and variable-width Gaussian bases. 101 basis

functions were used with some appropriately chosen parameters.

Exact Shifted Variable-width

0.5 0.500000000000 0.500000000000
1.5 1.500000000000
2.5 2.500000000000 2.499999999954
3.5 3.500000000009
4.5 4.500000000059 4.499999998287
5.5 5.500000001890
6.5 6.500000005356 6.499999967019
7.5 7.500000161985
8.5 8.500000213739 8.499997966523
9.5 9.500007221469



Galerkin method summary

• Could be used to solve linear problems (differential equations,
eigenvalue problems)

• Easily generalized to problems in multiple dimensions (even more than
3)

• Requires an appropriate basis

• Basis functions may depend on a set of parameters that can be tuned
to make convergence even better


