
PHYS 511: Computational Modeling and Simulation - Fall 2017
Assignment #4, due Monday November 20, by 5:00 pm

Classical dynamics of N gravitating bodies; basics of parallel programming with OpenMP

In this assignment we will be simulating the dynamics of N gravitating bodies (essentially parti-
cles) using velocity Verlet algorithm. Dynamics of a system of interacting classical particles is a
very common problem – molecular dynamics and motion of stars in galaxies are typical examples
of this problem. Needless to say that when the number of particles N is large (in fact already
when N > 2) numerical simulations are the only practical way to approach it. It requires integrat-
ing Newton’s equations of motion that are represented by the following second-order differential
equations
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where mk is the mass of the k-th particle, rk = (xk, yk, zk) is its position, vk = (vkx, vy, vkz) is its
velocity vector, and Fk = (Fkx, Fky, Fkz) is the force acting on it. The force is determined through
the gradient ∇k = ( ∂
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) of the potential energy of interaction U ,

Fk = −∇kU. (3)

In the absense of external forces it is usually given as a sum of pairwise (and usually central)
interactions between the particles:

U =
∑
i<j

Uij, Uij = Uij(|ri − rj|). (4)

The integration of the above equations is performed over a certain period of time starting from
some initial conditions:
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While many different approaches exist to integrate these equations of motion, one of the simplest
and most popular ones are the Verlet algorithm. In particular, a single time step of the velocity
Verlet algorithm (there is also so called position Verlet) can be stated as follows:
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Here ∆t is the time step of the integration.

1. Write a Fortran program that simulates the motion of N (this number is unknown in
advance) gravitating objects. The pair interaction potential of two gravitating objects (in
some appropriate units where the gravitational constant is unity) is Uij = − mimj

|ri−rj | .

2. The parameters of the simulation are the following: t(0) = 0, t(fin) = 5, ∆t = 0.001. The
masses and initial positions and velocities of the N objects are provided in the input file
(init.dat).



3. At each integration step print one line on the screen that shows the current iteration number,
current time t, current total energy E, and the relative energy change ∆E/E (with respect
to the previous iteration). These values should serve as good indicators of the quality
of the integration scheme used. The total mechanical energy of the system is defined as
E = 1
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Ukl(|rk − rl|).

4. At the final step output the state of the system in a file (final.dat) that has the same
format as init.dat.

5. Use OpenMP clauses to facilitate parallelism in your code.

6. When you know your code works properly and no longer needs any debugging, recompile it
with a compiler flag that corresponds to the highest optimization level, -O3, e.g.
gfortran -O3 -fopenmp myprog.f90 -o myprog

This will ensure that it runs with the highest possible speed.

7. Make test runs of your code with different numbers of CPU cores involved, measure the
execution time in each case. The number of cores can be controlled through the value of
environmental variable OMP_NUM_THREADS, e.g. in order to use two cores just type export

OMP_NUM_THREADS=2 in the terminal before executing the program. Do you observe any
speed up when you increase the number of cores? Is it something that you expected? Why
yes or why not? The discussion and interpretation of what you observe is an important part
of the assignment.

8. Submit your code (as4.f90) along with the final output (final.dat) and any relevant
discussion and comments (report.txt) by uploading them to directory as4 on your google
drive that is shared with the instructor.

9. Bonus task for the geeks. Can you visualize the dynamics in a video (e.g. avi, mp4, mov,
animated png)? For that you will need your program to output the coordinates of all
particles of the system every few iterations (as a separate file) and then write a shell or
Python script that generates plots (e.g. png files where each particle is represented as a dot
or a tiny ball in 3D) for each of these separate snapshots of the system. Lastly, you can use
some programs to generate a movie from the set of sequential png files.

Found an error or need a clarification? Email the instructor at sergiy.bubin@nu.edu.kz
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