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Analytic approximation of a function

What we have done previously is that we represented
a function (a solution of a differential equation of an
eigenvalue problem) as an array of points on a grid.

You can think about this from a different pespective.
Essentially we represent the function as a combina-
tion of bins. If you define a bin as a sharp square
function bi (x) then f (x) can be represented as a lin-
ear combination of such functions:

f (x) =
N∑
i=1

cibi (x), bi (x) =

{
1, xi− h

2 < x < xi +
h
2

0, otherwise

ci = f (xi )



Analytic approximation of a function
What if instead of square bins we use some other (more sophisticated and,
hopefully, better) basis functions? Indeed, this is what we do when we
represent a function as a truncated Fourier series. Obviously the more the
terms we use in the Fourier series the better it approximates our function
on a given interval.

f (x) =
N∑
i=0

ci sin((i + 1)πx)

N = 3 N = 11



Analytic approximation of a function
The big question is: how do we choose coefficients ci? What are our
criteria? There may be different choices that give the result that in some
way can be considered a close approximation to f (x).
When we solve a linear differential equation with an unknown function
f (x), e.g.

Lf (x) = g(x),

we have the left and right hand sides of it. If we approximate f (x) as

fappr(x) =
N∑
i=1

ciϕi (x),

then we may naturally require that the left hand side deviates from the
right hand side as little as possible. That is, the residual

r(x) ≡ Lfappr − g

is minimized. What does it mean “minimized”? There may be different
measures of it.



Inner product of functions

For further discussion we need to define the inner product of two functions
p(x) and q(x) on a given interval/domain

〈p|q〉 =

b∫
a

p(x)∗q(x)dx ,

where the asterix (∗) stands for complex conjugation. In many situations
we deal with real functions so complex conjugation operation is not needed.

Another important concept is the orthogonality of two functions. Functions
p(x) and q(x) are orthogonal if

〈p|q〉 = 〈q|p〉 = 0.



Galerkin orthogonality
Since we have a set of N basis functions ϕi at our disposal we may require
that the residual r(x) = Lfappr − g is orthogonal to the subspace spanned
by {ϕi}. In other words, r(x) should be orthogonal to each ϕi . This
property is the Galerkin orthogonality.
This yields a system of equations:

〈ϕj |r〉 = 0, j = 1, . . . ,N

or

〈ϕj |L
N∑
i=1

ciϕi − g〉 = 0, j = 1, . . . ,N

which is equivalent to a system of N linear algebraic equations:

N∑
i=1

ci 〈ϕj |Lϕi 〉︸ ︷︷ ︸
Aji

= 〈ϕj |g〉︸ ︷︷ ︸
bj

, j = 1, . . . ,N

Ac = b



Choice of basis

The most important part of the Galerkin type methods is the choice of an
appropriate basis {ϕi}, i = 1 . . .N

• The basis should be good enough to represent the solution accurately
(at least in the domain where we are interested)

• It should provide systematic convergence if we increase N (i.e. the
basis should be complete)

• It should satisfy the boundary conditions of the problem

• All “inner products” (i.e. integrals Aji and bj) with basis functions
{ϕi} should be computable and these computations should be
numerically efficient.



Galerkin method example 1
Let us solve the differential equation

f ′′(x) + f (x) = 2x(x − 1),

with the boundary conditions y(0) = 0 and y(1) = 0. In this case

L =
d2

dx2
+ 1 g(x) = 2x(x − 1).

The exact analytic solution to this equation is known and is given by

f (x) = 2(x − 2)(x + 1) + 4 cos x + 4 tan(1/2) sin x

Let us choose some appropriate basis, N = 3:

ϕ1(x) = x(1− x), ϕ2(x) = x2(1− x)2, ϕ3(x) = x3(1− x)3.

Each basis function satisfies the above boundary conditions, so any linear
combination of them will obviously satisfy them too. Our trial (i.e.
approximate) solution is then

fappr(x) =
3∑

i=1

ciϕi (x).



Galerkin method example 1

When we substitute the trial function into the expressions for projections,
namely

〈ϕj |r〉 =

∫ 1

0
ϕj(x) [Lfappr(x)− g(x)] dx = 0,

or, equivalently,∫ 1

0
ϕj(x)

[
f ′′appr(x) + fappr(x)− 2x(x − 1)

]
dx = 0.

we obtain 3 equations for j=1, 2, and 3.



Galerkin method example 1

If we work out the integrals and do some basic algebra, we will get the
following system of 3 linear equations:

− 3

10
c1 +

5

84
c2 −

4

315
c3 =

1

15
,

5

84
c1 +

11

630
c2 +

61

13860
c3 = − 1

70
,

− 4

315
c1 +

61

13860
c2 −

73

60060
c3 =

1

315
.

(1)

which has the following solution:

c1 = −1370
7397 ≈ −0.18521,

c2 = 50688
273689 ≈ 0.185203,

c3 = − 132
21053 ≈ −0.00626989.



Galerkin method example 2
Galerkin method can also be used to solve eigenvalue problems. Let us
consider the Schrödinger equation for 1D harmonic oscillator:

HΦi (x) = EiΦi (x) (2)

where the Hamiltonian is

H = − ~2

2m

d2

dx2
+ V (x). (3)

and

V (x) =
mωx2

2
.

The Ritz theorem says

ε =
〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E1, (4)

Here E1 is the exact energy of the ground state. The equality holds if and
only if ψ ≡ Φ1.



Galerkin method example 2
Use

ψ(x) =
N∑
i=1

ciϕi (x). (5)

φi ’s are basis functions, ci are the expansion coefficients (linear variational
parameters). Minimization with respect to ci ’s yields the generalized
eigenvalue problem:

Hc = εSc, (6)

Hij = 〈ϕi |H|ϕj〉, Sij = 〈ϕi |ϕj〉, c =


c1
c2
...
cN

 .

There are actually N solutions (roots) to equation (6). The mini-max
theorem guarantees that

ε1 ≥ E1, ε2 ≥ E2, . . . , εN ≥ EN . (7)



Galerkin method example 2

Gaussian basis functions

ϕi (x) =
(αi

π

)1/2
e−αi (x−si )2 . (8)

Here αi and si are nonlinear variational parameters. Matrix elements are
easily calculable:

〈ϕi |ϕj〉 =

(
2
√
αiαj

αi + αj

)1/2

exp

(
−

αiαj

αi + αj
(si − sj)

2

)
, (9)

〈ϕi | −
~2

2m

d2

dx2
|ϕj〉 =

~2

m

αiαj

αi + αj

(
1−

2αiαj

αi + αj
(si − sj)

2

)
〈ϕi |ϕj〉, (10)

V (x) =
mω2x2

2
: 〈ϕi |V (x)|ϕj〉 =

mω

2

(
1

αi + αj
+

(
αi si + αjsj
αi + αj

)2
)
〈ϕi |ϕj〉.

(11)



Galerkin method example 2

Normalized Gaussian functions with different αi .



Galerkin method example 2

Normalized Gaussian functions with different si and the same αi .



Galerkin method example 2

Comparison of the eigenenergies of the quantum harmonic oscillator
obtained by using shifted and variable-width Gaussian bases. 101 basis

functions were used with some appropriately chosen parameters.

Exact Shifted Variable-width

0.5 0.500000000000 0.500000000000
1.5 1.500000000000
2.5 2.500000000000 2.499999999954
3.5 3.500000000009
4.5 4.500000000059 4.499999998287
5.5 5.500000001890
6.5 6.500000005356 6.499999967019
7.5 7.500000161985
8.5 8.500000213739 8.499997966523
9.5 9.500007221469



Galerkin method summary

• Could be used to solve linear problems (differential equations,
eigenvalue problems)

• Easily generalized to problems in multiple dimensions, even more than
in 3D

• Requires an appropriate basis (ideally such that all matrix elments can
be computed analytically)

• Basis functions may depend on a set of parameters that can be tuned
to make convergence even better


