
Introduction to parallel computing with MPI

Sergiy Bubin

Department of Physics
Nazarbayev University



Distributed Memory Environment

image credit: LLNL



Hybrid Memory Environment

Most modern clusters and supercomputers built using a hybrid approach:
Many independent nodes. However, within a node (usually 2-4 CPUS, a
few cores total) the memory is shared

Distributed Memory Hybrid (Shared/Distributed)



What is MPI?

MPI (Message Passing Interface) is a standard of library routines that can
be used to create parallel programs in Fortran and C/C++.

• De facto standard for communication among processes for programs
running on distributed memory systems

• Dominant tool in today’s high-performance computing

• Supported by many vendors of computer hardware

• Standardized and portable

• Includes routines for both point-to-point and collective communication

• Several standard revisions have been released: MPI-1, MPI-1.1,
MPI-1.2, MPI-1.3, MPI-2, MPI-3



Use of MPI

• Originally, MPI was designed for distributed memory architectures

• Today, MPI runs on virtually any hardware platform: distributed
memory, shared memory, hybrid

• The programming model remains a distributed memory model
regardless of the actual physical environment

• While MPI is very functional and contains hundreds of various
subroutines, most MPI programs can be written using just a few of
them



Open MPI

Open MPI (not to be confused with OpenMP) is a free and open source
(BSD license) implementation of MPI. Contributors to Open MPI include
many hardware vendors and academic institutions. It is continuously
developed, and maintained, and has a huge user base. Open MPI is included
in most Linux distributions (usually not installed by default though).



How to compile and run an MPI program

Compile: normally one invokes a wrapper called mpif90 (mpicc, mpicxx,
mpif77, etc.). This eliminates the need to include multiple arguments
telling the compiler (e.g. gfortran, ifort, etc.) where the MPI libraries are
located and how exactly the compilation should be done
mpif90 myprog.f90 -o myprog

Execute: use mpirun (mpiexec)
mpirun -np 4 ./myprog ← Runs 4 parallel MPI processes



MPI Programming Model

• An MPI program consists of autonomous processes

• The processes may run either the same code (SPMD style) or different
codes (heterogenious). Most often the code is the same.

• Processes communicate with each other via calls to MPI subroutines as
necessary

• Execution model allows each process to operate separately

• Processes are created at startup and continue throughout the entire
execution

• Synchronization is implicit in each point-to-point or collective data
movement collective data movement

• Memory is private to each process



MPI in Fortran

• Subroutine names are in uppercase; e.g., MPI RECV
call MPI XXXX(parameter, ... , IErr)

• Subroutine return codes are represented by an additional integer
argument. The return code for successful completion is MPI SUCCESS
(i.e. 0)

• Compile-time constants are in uppercase and are defined in the mpif.h

file, which must be included in any program that makes MPI calls
include ’mpif.h’

• An MPI datatype is defined for each Fortran datatype:
MPI INTEGER, MPI REAL, MPI DOUBLE PRECISION,
MPI COMPLEX, MPI LOGICAL MPI CHARACTER, etc.



Basic Subroutines

• MPI INIT

• MPI COMM SIZE

• MPI COMM RANK

• MPI SEND

• MPI RECV

• MPI BCAST

• MPI ALLREDUCE

• MPI FINALIZE



MPI Program Structure



Basic Program

A Hello, World! program with MPI would look as follows

program myprog

include ’mpif.h’

integer nprocs, rank, ierr

!initialize MPI

call MPI_INIT(ierr)

!get number of tasks

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

!get my rank

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

write(*,*), ’Number of procs=’,nprocs,’ My rank=’,rank

!finalize MPI

call MPI_FINALIZE(ierr)

end program myprog



Basic Program

When we run the above program we will get:
mpirun -np 4 ./myprog

Number of procs= 4 My rank= 2

Number of procs= 4 My rank= 0

Number of procs= 4 My rank= 1

Number of procs= 4 My rank= 3



Basic Program: Integral of sin(x) from 0 to 1
In this program work is divided between processors

program integrate

include ’mpif.h’

integer nprocs, rank, ierr, i, npoints

real(8) s, ss, x, h

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

npoints=101; h=0.01_8

do i=rank,npoints-1,nprocs

x=i*h

s=s+sin(x)

enddo

call MPI_ALLREDUCE(s,ss,1,MPI_DOUBLE_PRECISION,MPI_SUM, &

MPI_COMM_WORLD,ierr)

if (rank==0) write(*,*), ’Integral=’,ss*h

call MPI_FINALIZE(ierr)

end program integrate



Summary

• A computation consists of a (typically fixed) set of heavyweight
processes, each with a unique identifier (integers 0,1,. . . ,P-1)

• Using this identifier and the total number of processes (which is known
to each process via MPI COMM SIZE) the work can be distributed
between processes unambigously

• Processes interact by exchanging typed messages, by engaging in
collective communication operations, or by probing for pending
messages

• Determinism is not guaranteed but can be achieved with careful
programming when necessary



References

A huge number of tutorials and reference books exist on the internet. Feel
free to google. Check out these, for example:

• https://computing.llnl.gov/tutorials/mpi/

• http://www.mcs.anl.gov/research/projects/mpi/usingmpi/

https://computing.llnl.gov/tutorials/mpi/
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/

