
A quick guide to Fortran

Sergiy Bubin

Department of Physics
Nazarbayev University



History of Fortran

• One of the oldest general purpose high-level computer
languages

• First developed in 1957 at IBM in the era of punch cards

• Fortran name originated from an acronym - FORmula
TRANslation

• Fortran evolution:
• Fortran 57
• Fortran II
• Fortran IV
• Fortran 66
• Fortran 77
• Fortran 90
• Fortran 2000
• Fortran 2003
• Fortran 2008
• Fortran 2015



Why Fortran?



Why Fortran?

One of my favorite jokes of all times. It is often attributed to
different people (Seymour Cray, John Backus, Edsger Dijkstra) so I
do not know who was the the original author. It appeared in the
end of 1970s, upon standardization of Fortran 77.

Q: What will the scientific programming language of
the year 2000 look like?

A: Nobody knows, but its name will be Fortran.



Why Fortran?

• Designed for scientific and engineering applications that
involve heavy number crunching

• Large portion of existing scientific/engineering software is
coded in Fortran

• Speed of computations - as a rule Fortan compilers generate
the fastest code

• Huge legacy: mathematical functions/subroutines/algorithms
developed by the scientific community over half century

• Actively developed and supported by major hardware vendors:
Intel, HP, IBM, Cray, Fujitsu, Sun, AMD, etc.

• Free and open source versions are available on essentially any
platform



Essential features

• Designed for scientific and engineering applications that
involve heavy number crunching

• Array-oriented language - convenient support of arrays and
array operations

• Compilers can generate highly optimized code

• Lots of available numerical/math libraries (both free and
commercial ones), e.g. Intel MKL, IMSL, NAG

• Starting with Fortran 90 many contemporary programming
constructs have been included

• Fortran is a compiled language

• Interoperable with other languages (in particular C)

• Code portability



Building a fortran program

A typical framework for developing a Fortran program looks as
follows

Picture: AE6382 Georgia Tech



“Old” vs “New” Fortran

Fortran standards before Fortran 90 require a fixed format of the
code



“Old” vs “New” Fortran

Fortran 90 relaxes this constraint

Note: Fortran does not care about the case (upper/lower), so a
variable a is the same as A. A statement write(*,*) a is the same
as WRITE(*,*)



“Old” vs “New” Fortran

• Compilers retain backward compatibility, e.g. a Fortran
program written according to an older standard should (and
generally is) be compilable with newer compilers

• The general convention (not a requirement) is that fixed
format source files have an extention .f, while the free format
source files have an extention .f90

myprog.f myprog.f90



General structure of a Fortran program

• A Fortran programs consist of a main program (can have an
arbitrary name) and may contain one or more subprograms
(subroutines, functions)

• Declaration of variables/data, subroutines, and functions may
be put in a separate program unit – a module

• The entire code may be split into multiple source files
(convenient for large projects)

A basic structure of a main program:

program myprog
< declaration of variables and data >
< program body >
end program myprog

< definition of subroutines/functions >



gfortran

• gfortran is a modern, free, open source version of Fortran
developed by the software community undeg GNU general
public license

• Available on almost any platform

• High quality and fast (although may generate a code that
runs is a little bit slower than that by some harware vendors
and/or commercial compilers)



Fortran data types

Basic data types

• integer – integer numbers

• real – floating point numbers

• double precision – floating point numbers

• character(n) – strings with up to n characters

• logical – logical variable that takes on values .true. or .false.

• complex – complex numbers



Fortran data types

Integers and reals can specify the kind (essentially the number of
bytes that they use)

• real(4) - single precision real numbers (about 7-8 decimal
figures)

• real(8),double precision - double precision real numbers
(about 15-16 decimal figures)

• complex(4) - single precision complex numbers

• complex(8) - double precision complex numbers

• integer(4) - integers ranging from −2147483648 to
+2147483647

• integer(8) - integers ranging from −9223372036854775808 to
+922337203685477580

The default is integer(4) and real(4)



Fortran data types

One needs to be extra careful with arithmetic operations in Fortran

• a=2/3 will give 0 even if a is declared as real

• a=2.0/3 will convert 8 to single precision then will divide 2.0
by 3.0 with single precision, then it will assign the (single
precision) result to a. If a is declared as a double precision,
you will essentially have only half (7-8) accurate digits in it.
For double precision the proper syntax would be a=2.0D0/3
or a=2.0 8/3



Fortran data types

One needs to be extra careful with arithmetic operations in Fortran

• a=2/3 will give 0 even if a is declared as real

• a=2.0/3 will convert 8 to single precision then will divide 2.0
by 3.0 with single precision, then it will assign the (single
precision) result to a. If a is declared as a double precision,
you will essentially have only half (7-8) accurate digits in it.
For double precision the proper syntax would be a=2.0D0/3
or a=2.0 8/3



Arrays

Arrays of any type must be declared, e.g.

• real(8), dimension(20,30) :: a,b – declares two static arrays (a
and b) of size 20x30 whose elements are double precision
numbers

• integer(4) a(10), b(20), c(30,30), d(10,10,10) – declares
three static arrays. Array a is a vector with 10 elements.
Array b is a vector with 20 elements. Array c is a 30x30
matrix. Array d is a 10x10x10 3D array. All these arrays are of
type integer(4).

Referencing an element of an array:

• x=a(15,15) – assigns variable x the value stored in element
15,15 of matrix a



Allocatable Arrays

When the size of data is not known it advance (or if there are other
reasons), it is possible to allocate/deallocate arrays as necessary
program myprog
real(8),dimension(:,:) :: a
real(8),dimension(:) :: b
allocate(a(10,10),b(20))
< ... do something else ... >
deallocate(a,b)
allocate (b(100))
< ... do something else ... >
deallocate(b)
end program



Default types

• By default, an implicit type is assumed depending on the first
letter of the variable name: A-H, O-Z define real variables I-N
define integer variables

• We can use the implicit statement: implicit real (A-Z) makes
all variables real if not declared

• implicit character(2) (W) makes variables starting with W be
2-character strings

• A good habit is to force explicit type declarations by putting
implicit none in the beginning of your program or module (i.e.
after program myprogramname statement)



Parameters

Constants can be declared as follows

real(8),parameter :: pi=3.141592653589793D+00
real(8),parameter :: halfpi=3.141592653589793D+00/2



Execution control - if statement

if (a>2) b=3

if ((a==1).or.(a==2)) then
b=3

else
b=4

endif

if (a>10) then
b=1

elseif (a<5) then
b=2

else
b=3

endif



Loops

do i=1,10
< ... do something ... >

enddo

do i=100,1,-5
< ... do something ... >

enddo

do while ((x>0).and.(y==5))
< ... do something ... >

enddo



Functions and subroutines

program main
real(8) x,y,z

x=10.0d0; y=20.0d0
z=myfunc(x)
call mysub(y,z)

end program main

function myfunc(a)
real(8) a,myfunc

myfunc=a*a
end function myfunc

subroutine mysub(a,b)
real(8) a,b

write(*,*) a,b
end subroutine mysub



Input and output statements

• write(*,*) a,b – writes into the default device (screen) the
values of two variables a and b using default format

• write(1,*) a – writes the value of variable a into device 1
(usually a file that needs to be open prior to that)

• write(1,’(a,i3,a,d13.6)’) ’measurement number ’,j,’ yielded ’,y
– writes four variables (a string, an integer number, a string,
and a double precision number into device 1 according to the
specified format (3 total digits for the integer j, 13 total
symbols + 6 decimal figures for the float number y))

Pretty much the same rules apply to read statement



Opening and closing files

• open statement is used to make file available to read and write

• Several files can be opened at the same time if necessary
(each referenced by a device number)

• Files can be of either binary form (fast read, compact storage,
but unreadable by humans) or ASCII format (readable text)

• Positioning and reading in a file is sequential

• close statement is used to close access to a file



Example of writing a matrix into an ASCII file

program myprog
integer,parameter :: n=5
real(8) A(n,n)
integer i,j
call random number(A)
open(1,file=’myfile.dat’)
do i=1,n

do j=1,n
write(1,’(1x,d23.16)’,advance=’no’) A(i,j)

enddo
write(1,*)

enddo
close(1)
end program myprog



Compiling a simple Fortran program with gfortran

• Write a program (e.g. file myprog.f90) in any editor of your
choice

• Open a terminal and go to the directory where file myprog.f90
is located

• Type gfortran myprog.f90 -o myprog

• After that (if no error occurs) a binary file called myprog will
be generated and placed in the same directory

• You can now run this binary file in the terminal by typing
./myprog



LAPACK

LAPACK (Linear Algebra PACKage) is a widely used numerical
software package written in Fortran. It contains a large number of
subroutines to solve various problems that involve matrices -
systems of linear equations, eigenvalue problems, singular value
decompositions, etc. It makes use of BLAS (Basic Linear Algebra
Subprograms) - highly tuned sets of subprograms that are available
for most hardware platforms. It emerged in 1990s from the famous
LINPACK and EISPACK packages and is being
maintained/developed by numerical mathematicians in several
National Labs and Universities.

• Used as a component in most scientific software (due to the
ubiquity of linear algebra problems in numerical computations)

• Exploits the architechture of moderns computers (e.g. cache)

• Very efficient for general purposes

• Some vendors adapt it for multi-core CPUs



LAPACK

• Guide and (non-optimized, reference) source code is available
at
http://www.netlib.org/lapack

• Comments explaining all arguments are provided in the source
of each subroutine

http://www.netlib.org/lapack


Linking with precompiled LAPACK library when using
gfortran

• Write a program (e.g. file myprog.f90) that calls a LAPACK
subroutine

• Open a terminal and go to the directory where file myprog.f90
is located

• Type gfortran myprog.f90 -o myprog -llapack

• After that (if no error occurs) a binary file called myprog will
be generated and placed in the same directory

• You can now run this binary file in the terminal by typing
./myprog



References

A huge number of Fortran manuals/guides/reference
books/youtube videos/presentation slides/tutorials exist. Feel free
to google. Examples of the books are:

• R. Davis, A. Rea, D. Tsaptsinos, Introduction to Fortran 90

• J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, J. L.
Wagener, Fortran 90 Handbook


	

