PHYS 451: Quantum Mechanics I - Spring 2017
Location & Contact Info
Instructor: Sergiy Bubin
Lecture Hours: Tue,Thu 12:00 PM - 1:15 PM in room 7.427
Recitations: Fri 1:00 PM - 1:50 PM in room 7.427
Office Hours: Tue,Thu 3:00 PM - 4:00 PM in room 7.204 (or by appointment)
Phone: +7 (7172) 69 46 63
Email: sergiy.bubin@nu.edu.kz
Course Description
In this course, students learn the basics of non-relativistic quantum mechanics.
The course introduces the concept of the wave function, its interpretation,
and covers the topics of potential wells, potential barriers,
quantum harmonic oscillator, and the hydrogen atom. Next,
a more formal approach to quantum mechanics is taken by
introducing the postulates of quantum mechanics, quantum operators,
Hilbert spaces, Heisenberg uncertainty principle, and time evolution.
The course ends with topics covering the addition of angular momenta, spin,
and some basic aspects of many-body quantum mechanics.
The course will include two lectures per week accompanied by a recitation.
Course Info
Syllabus: syllabus.pdf
Required Textbook
David J. Griffiths, Introduction to Quantum Mechanics (2nd Edition)
Other Useful References
Many other texts exist on quantum mechanics both at the introductory and more advanced level,
some can be found in the library, and can also be very useful in this course.
Students are encouraged to explore those. Examples of the introductory level textbooks are:
- Richard Liboff, Introductory Quantum Mechanics (4th Edition)
- Robert Scherrer, Quantum Mechanics: An Accessible Introduction
- Robert Eisberg, David O. Caldwell, and Richard J. Christman, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
- Ira N. Levine, Quantum Chemistry (6th Edition)
Homework Assignments
Quizzes
Exams
Lecture Materials
Important note: Lecture materials provided below may be inclomplete
and should not be considered a substitute for notes taken in class or textbook materials
Lecture
| Date
| File
| Topic
|
Lecture #1 |
Jan 10 |
lec01.pdf |
Introductory notes. Timeline of quantum mechanics. |
Lecture #2 |
Jan 12 |
lec02.pdf |
Review of basic probability theory. |
Lecture #3 |
Jan 17 |
lec03.pdf |
Wave-particle duality. Schrodinger equation and its key characteristics. Statistical interpretation of wave function. |
Lecture #4 |
Jan 19 |
lec04.pdf |
Expectation values. Momentum operator. Heisenberg uncertainty principle. Stationary states. |
Lecture #5 |
Jan 24 |
lec05.pdf |
Particle in infinite square well. |
Lecture #6 |
Jan 26 |
lec06.pdf |
Quantum harmonic oscillator. |
Lecture #7 |
Jan 31 |
lec07.pdf |
Fourier series and Fourier transform. Free particle. |
Lecture #8 |
Feb 2 |
lec08.pdf |
Review of Dirac delta function. Particle in delta function potential. |
Lecture #9 |
Feb 7 |
lec09.pdf |
Finite square well. Transmission through square rectangular barrier. |
Lecture #10 |
Feb 9 |
lec10.pdf |
Commutators. Solution of quantum harmonic oscillator problem using creation and annihilation operators. |
Lecture #11 |
Feb 14 |
lec11.pdf |
Formalism of quantum mechanics. |
Lecture #12 |
Feb 16 |
lec12.pdf |
Cauchy-Schwarz inequality. General form of uncertainty principle. Time-evolution of expectation values. Energy-time uncertainty principle. |
Lecture #13 |
Feb 21 |
lec13.pdf |
Dirac notation, representations, projection and identity operators, spectral decomposition. |
Lecture #14 |
Feb 23 |
lec14.pdf |
Schrödinger equation in 3D. Separation of variables for spherically symmetric potentials. Spherical harmonics. |
Lecture #15 |
Feb 28 |
lec15.pdf |
The hydrogen-like atom. |
Lecture #16 |
Mar 2 |
lec16.pdf |
Reduction of two-body problem with central interaction into one-body problem. Quantum rigid rotor. |
Lecture #17 |
Mar 7 |
lec17.pdf |
Commutation relations for the angular momentum. The ladder operator method. |
Lecture #18 |
Mar 9 |
lec18.pdf |
Matrix representation of the angular momentum operator. |
Lecture #19 |
Mar 28 |
lec19.pdf |
Addition of angular momenta. |
Lecture #20 |
Mar 30 |
lec20.pdf |
Spin. Properties of Pauli matrices. |
Lecture #21 |
Apr 4 |
lec21.pdf |
Electron in magnetic field. Larmor precession. Stern-Gerlach experiment. |
Lecture #22 |
Apr 6 |
lec22.pdf |
Many-body problem in quantum mechanics. Exchange interaction. |
Lecture #23 |
Apr 11 |
lec23.pdf |
Shell structure of atoms. |
Lecture #24 |
Apr 13 |
lec24.pdf |
Periodic potentials. Band structure. |
Lecture #25 |
Apr 18 |
lec25.pdf |
Density matrix. | >
Lecture #26 |
Apr 20 |
lec26.pdf |
Time evolution operator. Schrodinger, Heisenberg, and interaction pictures. |
Found an error on this page or in any of the pdf files? Send an email to the instructor at sergiy.bubin@nu.edu.kz.
|